Isobaric Process - Entropy

on . Posted in Thermodynamics

  

Isobaric process - entropy Formula

\( S  =  \Delta S \; C_p \; [ \; ln \; ( T_f \;/\; T_i ) \; ]  \) 
Symbol English Metric
\( S \) = entropy \(Btu \;/\; lbm-R\) \(kJ \;/\; kg-K\)
\( \Delta S \) = change in entropy \(Btu \;/\; lbm-R\) \(kJ \;/\; kg-K\)
\( C_p \) = heat capacity at constant pressure \(Btu \;/\; R\) \(kJ \;/\; K\)
\( ln \) = natural logarithm \(dimensionless\)
\( T_f \) = final temperature \(R\) \(K\)
\( T_i \) = initial temperature \(R\) \(K\)

 

Isobaric process - entropy Formula

\( S  =  \Delta S \; ( n\; C_v) \;  [ \; ln \; ( T_f \;/\; T_i ) \; ]  \) 
Symbol English Metric
\( S \) = entropy \(Btu \;/\; lbm-R\) \(kJ \;/\; kg-K\)
\( \Delta S \) = change in entropy \(Btu \;/\; lbm-R\) \(kJ \;/\; kg-K\)
\( n \) = number of moles \(dimensionless\)
\( C_v \) = heat capacity at constant volume \(Btu \;/\; R\) \(kJ \;/\; K\)
\( ln \) = natural logarithm \(dimensionless\)
\( T_f \) = final temperature \(R\) \(K\)
\( T_i \) = initial temperature \(R\) \(K\)

 

P D Logo 1 

Tags: Pressure Heat Energy Constant Entropy