Skip to main content

Instantaneous Velocity

 

Instantaneous Velocity Formula

\(  v(t)  \;=\;  \lim_{ \Delta t \rightarrow 0 }  \dfrac{ dx }{ d t }\)     (Instantaneous Velocity)

\( dx \;=\;   v(t)  \cdot d t \)

\( d t \;=\;  \dfrac{ dx }{ v(t)  }\)

Symbol English Metric
\( v(t) \) = instantaneous velocity \(ft\;/\;sec\) \(m\;/\;s\)
\( d x \) = Infinitesimally Small Change in Position \(ft\) \(m\)
\( d t \) = Infinitesimally Small Change in Time \(sec\) \(s\)

Instantaneous velocity, abbreviated as \( v_{ins} \), is the velocity of an object at a specific moment in time.  It describes both the speed and direction of motion at that exact instant, rather than over a period of time like average velocity.  Mathematically, it is defined as the limit of the average velocity as the time interval approaches zero, where \( d x \) is an infinitesimally small displacement and \( d t \) is an infinitesimally small time interval.  Instantaneous velocity is crucial in understanding how an object’s motion changes continuously, especially when acceleration is present. 

Piping Designer Logo 1