Right Triangular Pyramid
Home
Mathematics
Geometry
Solid Geometry
Right Triangular Pyramid
Tags:
Solid Pyramid
surface area of a Right Triangular Pyramid formula
\( A_s \;= \; \dfrac{1}{2} \cdot \left(h_b \cdot a\right) + \dfrac{3}{2} \cdot \left(a \cdot h_s\right) \)
Symbol
English
Metric
\( A_s \) = surface area
\( in^2 \)
\( mm^2 \)
\( a \) =
edge
\( in \)
\( mm \)
\( h_b \) = height base
\( in \)
\( mm \)
\( h_s \) = height side
\( in \)
\( mm \)
Right triangular prism (a three-dimensional figure) has a triangle base and the apex alligned above the center of the base.
1 base
6 edges
3 faces
4 vertexs
Volume of a Right Triangular Pyramid formulas
\( V \;=\; \dfrac{1}{6} \cdot h_b \cdot a \cdot h \)
\( V \;=\; \dfrac{1}{3} \cdot A_b \cdot h \)
Symbol
English
Metric
\( V \) = volume
\( in^3 \)
\( mm^3 \)
\( A_b \) = base area
\( in^2 \)
\( mm^2 \)
\( a \) =
edge
\( in \)
\( mm \)
\( h \) = height
\( in \)
\( mm \)
\( h_b \) = height base
\( in \)
\( mm \)
Similar Articles
Volume
Right Pentagonal Pyramid
Solid Geometry
Right Square Pyramid
Latest Articles
Pressure Drop Across a Nozzle/Orfice
Pressure Required to Overcome Mud's Gel Strength Inside the Drillstring
Pressure Required to Overcome Mud's Gel Strength in Annulus
Pressure Required to Break Circulation in Drillstring
Distance from Centroid of a Circle