Morton Number formula |
||
\( Mo \;=\; \dfrac{ g \cdot \mu^4 \cdot \Delta \rho }{ \rho^2 \cdot \sigma^3 }\) \( \mu \;=\; \sqrt[4] { \dfrac{ Mo \cdot \rho^2 \cdot \sigma^3 }{ g \cdot \Delta \rho } }\) \( \Delta \rho \;=\; \dfrac{ Mo \cdot \rho^2 \cdot \sigma^3 }{ g \cdot \mu^4 }\) \( \rho \;=\; \sqrt{ \dfrac{ g \cdot \mu^4 \cdot \Delta \rho }{ Mo \cdot \sigma^3 } }\) \( \sigma \;=\; \sqrt[3] { \dfrac{ g \cdot \mu^4 \cdot \Delta \rho }{ Mo \cdot \rho^2 } }\) |
||
Symbol | English | Metric |
\( Mo \) = Morton number | \(dimensionless\) | \(dimensionless\) |
\( g \) = Gravitational Acceleration | \(ft\;/\;sec^2\) | \(m\;/\;s^2\) |
\( \mu \) (Greek symbol mu) = Dynamic Viscosity of Surrounding Fluid | \(lbf-sec\;/\;ft^2\) | \( Pa-s \) |
\( \Delta \rho \) = Density Differential in the Phases | \(lbm\;/\;ft^3\) | \(kg\;/\;m^3\) |
\( \rho \) (Greek symbol rho) = Density of Surrounding Fluid | \(lbm\;/\;ft^3\) | \(kg\;/\;m^3\) |
\( \sigma \) (Greek symbol sigma) = Surface Tension | \(lbf\;/\;ft\) | \(N\;/\;m\) |
Morton number, abbreviated as Mo, a dimensionless number, is used in fluid mechanics to characterize the behavior of bubbles or droplets in a surrounding fluid. It is particularly relevant in the study of multiphase flows, such as in bubbly liquids or emulsions. The Morton number helps describe the balance between viscous forces, gravitational forces, and surface tension forces acting on the bubble or droplet.
Morton Number Interpretation