Differential equation, abbreviated as \(\Delta\) (Greek symbol Delta) or DIFF, is an equation which contains one or more terms and the derivatives of one variable with respect to the other variable. The rate at which this moving object changes relative to the other object can be expressed as the derivative of that initial mathematical equation.
Difference Between Terms
Derivative
A derivative is a math expression of a rate of change. Any rate of change of a moving object related to the other object can be expressed as a derivative.
A derivative is a rate of change, which is the slope of a graph in geometric terms. \({\large slope = \frac{ change\; in \;y }{ change\; in \; x } }\)
The mark \('\) means derivative of, and \(f\) and \(g\) are functions.
The slope of a constant value is always 0.
Derivative Rules |
||
Rules |
Function | Derivative |
Constant Function Rule | \(\large{ \frac{d}{dx}\;a = 0 }\) (where a = any constant) | |
Scalar Multiple Rule | \(\large{ \frac{d}{dx}\left(au \right) = a\;\frac{du}{dx} }\) (where a = any constant) | |
Sum Rule | \(\large{ \frac{d}{dx}\left(u+v \right) = \frac{du}{dx} + \frac{dv}{dx} }\) | |
Difference Rule | \(\large{ \frac{d}{dx}\left(u-v \right) = \frac{du}{dx} - \frac{dv}{dx} }\) | |
Power Rule | \(\large{ \frac{d}{dx} u^n = nu^{n-1} \frac{du}{dx} }\) | |
Product Rule | \(\large{ \frac{d}{dx}\left(uv \right) = u'v+uv' }\) | |
Quotient Rule | \(\large{ \frac{d}{dx}\left(\frac{u}{v} \right) = \frac{u'v-uv'}{v^2} }\) | |
Reciprocal Rule | \(\large{ \frac{d}{dx}\left(\frac{1}{v} \right) = \frac{v'}{v^2} }\) | |
Chane Rule | \(\large{ \frac{d}{dx} f \left( g\left( x \right) \right) = f' \left( g\left( x \right) \right) g'\left( x \right) }\) or \(\large{ \frac{dy}{dx} = \frac{dy}{du}\;\frac{du}{dx} }\) | |
Trig Function Rule |
\(\large{ \frac{d}{dx} \; sin\;u = cos\;u \;\frac{du}{dx} }\) \(\large{ \frac{d}{dx} \; cos\;u = sin\;u \;\frac{du}{dx} }\) \(\large{ \frac{d}{dx} \; tan\;u = sec^2\;u \;\frac{du}{dx} }\) \(\large{ \frac{d}{dx} \; cot\;u = csc^2\;u \;\frac{du}{dx} }\) \(\large{ \frac{d}{dx} \; sec\;u = sec\;u \;tan\;u \;\frac{du}{dx} }\) \(\large{ \frac{d}{dx} \; csc\;u = csc\;u \;cot\;u \;\frac{du}{dx} }\) |
|
Inverse Trig Function Rule |
\(\large{ \frac{d}{dx} \; sin^{-1}\;u = \frac{1}{\sqrt{1\;-\;u^2 } } \;\frac{du}{dx} }\) \(\large{ \frac{d}{dx} \; cos^{-1}\;u = -\; \frac{1}{\sqrt{1\;-\;u^2 } } \;\frac{du}{dx} }\) \(\large{ \frac{d}{dx} \; tan^{-1}\;u = \frac{1}{1\;+\;u^2 } \;\frac{du}{dx} }\) \(\large{ \frac{d}{dx} \; cot^{-1}\;u = -\; \frac{1}{1\;+\;u^2 } \;\frac{du}{dx} }\) \(\large{ \frac{d}{dx} \; sec^{-1}\;u = \frac{1}{\left\vert u \right\vert\;\sqrt{u^2\;-\; 1 } } \;\frac{du}{dx} }\) \(\large{ \frac{d}{dx} \; csc^{-1}\;u = -\; \frac{1}{\left\vert u \right\vert\;\sqrt{u^2\;-\; 1 } } \;\frac{du}{dx} }\) |
|
Expotential Function Rule | \(\large{ \frac{d}{dx} \left( \epsilon^{\alpha} \right) = \epsilon^{\alpha} \; \frac{du}{dx} }\) and \(\large{ \frac{d}{dx} \left( a^{\alpha} \right) = a^{\alpha} \left( ln\;a \right) \; \frac{du}{dx} }\) | |
Log Function Rule | \(\large{ \frac{d}{dx} \left( ln\;u \right) = \frac{1}{u} \; \frac{du}{dx} }\) and \(\large{ \frac{d}{dx} \left( log_{\lambda} \;u \right) = \frac{1}{ \left( ln\;a \right) u } \; \frac{du}{dx} }\) | |
Inverse Function Rule | \(\large{ \frac{d}{dx} f^{-1} \left( x \right) = \frac{ 1 }{ f' \left( f^{-1} \left( x \right) \right) } }\) |