| Set Symbols
This is a list of the most common set symbols. | 
|---|
| Symbol | Symbol | Definition | Example | 
|---|
| \(\{ \; \}\) | - | set, a collection | \(A= \{ 1, 2, 3, 4 \}\) ,  \(B= \{ 3, 4, 5, 6 \} \) | 
| \(\varnothing\) | varnothing | empty set | \(A=\{ \varnothing\} \) | 
| \(\cap\) | cap | intersection, belonging to set A or B | \(A\cap B =\{3, 4\}\) | 
| \(\cup\) | cup | union, belonging to set A or B | \(A\cup B =\{1, 2, 3, 4, 5, 6\}\) | 
| \(\subset\) | subset | strict subset, A is subset of B | \(\{3, 4\} \subset \{3, 4, 5, 6\}\) | 
| \(\subseteq\) | subseteq | subset, A subset of B, A included in B | \(\{3, 4\} \subseteq \{3, 4\}\) | 
| \(\nsubseteq\) | nsubseteq | not subset, A not subset of B | \(\{6, 7\} \nsubseteq \{3, 4, 5, 6\}\) | 
| \(\supset\) | supset | strict superset, A superset of B, B not equal to A | \(\{3, 4, 5, 6\} \supset \{3, 4\}\) | 
| \(\supseteq\) | supseteq | superset, A subset of B, A includes B | \(\{3, 4, 5, 6\} \supseteq \{3, 4, 5, 6\}\) | 
| \(\nsupseteq\) | nsupseteq | not superset, A not superset of B | \(\{3, 4, 5, 6\} \nsupseteq \{6, 7\}\) | 
| \(\uplus\) | uplus | multiset union, A plus B = C | \(A + B = \{ 1, 2, 3, 4, 5, 6 \}\) | 
| \(\in\) | in | belongs to or element of | \(B=\{3, 4, 5, 6\}\) ,  \(3\in B\) | 
| \(\notin\) | notin | does not belong to | \(B=\{3, 4, 5, 6\}\) ,  \(1\notin B\) | 
| = | - | equality, both sets the same A=B | \(\{3, 4, 5, 6\} = \{3, 4, 5, 6\}\) | 
| \(-\) | - | relative complement, belongs to B but not A | \(A-B = \{5, 6\}\) | 
| \(\ominus\) | ominus | symmetric difference, belongs to A or B gut no matches | \(A \ominus B = \{1, 2, 5, 6\}\) | 
| \(|\;|\) | - | cardinality, element of set B | \(|B|=\{3\}\) | 
| \(\mathbb{C}\) | - | complex number set | \(\mathbb{C} = \{3, \frac{3}{4}, 13.45, -3.56, ... \}\) | 
| \(\mathbb{N_0}\) | - | natural number set (with 0) | \(\mathbb{N_0} = \{ 0, 1, 2, 3, 4, 5, 6, ... \}\) | 
| \(\mathbb{N_1}\) | - | natural number set (without 0) | \(\mathbb{N_1} = \{ 1, 2, 3, 4, 5, 6, ... \}\) | 
| \(\mathbb{R}\) | - | real number set | \(\mathbb{R} = \{3, \frac{3}{4}, 13.45, -3.56, ... \}\) | 
| \(\mathbb{R}^+\) | - | real number set, positive | \(\mathbb{R} = \{3, \frac{3}{4}, 3.56, ... \}\) | 
| \(\mathbb{R}^-\) | - | real number set, negative | \(\mathbb{R} = \{-3, -\frac{3}{4}, -3.56, ... \}\) | 
| \(\mathbb{Q}\) | - | rational number set | \(\mathbb{Q} = \{ \frac{0}{1}, -\frac{1}{8}, \frac{3}{2} \}\) | 
| \(\mathbb{Q}^+\) | - | rational number set, positive | \(\mathbb{Q} = \{ \frac{0}{1}, \frac{1}{8}, \frac{3}{2} \}\) | 
| \(\mathbb{Q}^-\) | - | rational number set, negative | \(\mathbb{Q} = \{ -\frac{0}{1}, -\frac{1}{8}, -\frac{3}{2} \}\) | 
| \(\mathbb{U}\) | - | universal set | \(\mathbb{U} = \{ -3.56, -2, 0, \frac{3}{2}, 13.45, ... \}\) | 
| \(\mathbb{Z}\) | - | integer number set | \(\mathbb{Z} = \{ ... , -3, -2, -1, 0, 1, 2, 3, ... \}\) | 
| \(\mathbb{Z}^+\) | - | integer number set, positive | \(\mathbb{Z} = \{ 1, 2, 3, ... \}\) | 
| \(\mathbb{Z}^-\) | - | integer number set, negative | \(\mathbb{Z} = \{ ... , -3, -2, -1 \}\) |