# Right Cylinder

on . Posted in Solid Geometry

• Right cylinder (a three-dimensional figure) has two circular parallel congruent bases.
• 2 bases

### Height of a Right Cylinder formula

$$h = V \;/\; \pi \; r^2$$
Symbol English Metric
$$h$$ = height $$in$$ $$mm$$
$$r$$ = radius $$in$$ $$mm$$
$$\pi$$ = Pi $$3.141 592 653 ...$$
$$V$$ = volume $$in^3$$ $$mm^3$$

### Lateral Surface Area of a Right Cylinder formula

$$A_l = 2\; \pi\; r\; h$$
Symbol English Metric
$$A_l$$ = lateral surface area (side) $$in^2$$ $$mm^2$$
$$h$$ = height $$in$$ $$mm$$
$$r$$ = radius $$in$$ $$mm$$

### Radius of a Right Cylinder formula

$$r = \sqrt{ V \;/\; \pi \; h }$$
Symbol English Metric
$$r$$ = radius $$in$$ $$mm$$
$$h$$ = height $$in$$ $$mm$$
$$\pi$$ = Pi $$3.141 592 653 ...$$
$$V$$ = volume $$in^3$$ $$mm^3$$

### Surface Area of a Right cylinder formula

$$A_s = 2\; \pi\; r\;h+2\; \pi\; r^2$$
Symbol English Metric
$$A_s$$ = surface area (bottom, top, side) $$in^2$$ $$mm^2$$
$$h$$ = height $$in$$ $$mm$$
$$r$$ = radius $$in$$ $$mm$$

### Volume of a Right cylinder formula

$$V = \pi\; r^2\;h$$
Symbol English Metric
$$V$$ = volume $$in^3$$ $$mm^3$$
$$h$$ = height $$in$$ $$mm$$
$$r$$ = radius $$in$$ $$mm$$

Tags: Cylinder