# Right Cylinder

on . Posted in Solid Geometry

• Right cylinder (a three-dimensional figure) has two circular parallel congruent bases.
• 2 bases ## Height of a Right Cylinder formula

$$\large{ h = \frac{V}{\pi \; r^2} }$$
Symbol English Metric
$$\large{ h }$$ = height $$\large{ in }$$ $$\large{ mm }$$
$$\large{ r }$$ = radius $$\large{ in }$$ $$\large{ mm }$$
$$\large{ \pi }$$ = Pi  $$\large{3.141 592 653 ...}$$
$$\large{ V }$$ = volume $$\large{ in^3 }$$ $$\large{ mm^3 }$$ ## Lateral Surface Area of a Right Cylinder formula

$$\large{ A_l = 2\; \pi\; r\; h }$$
Symbol English Metric
$$\large{ A_l }$$ = lateral surface area (side) $$\large{ in^2 }$$ $$\large{ mm^2 }$$
$$\large{ h }$$ = height $$\large{ in }$$ $$\large{ mm }$$
$$\large{ r }$$ = radius $$\large{ in }$$ $$\large{ mm }$$ ## Radius of a Right Cylinder formula

$$\large{ r = \sqrt{ \frac{V}{\pi \; h} } }$$
Symbol English Metric
$$\large{ r }$$ = radius $$\large{ in }$$ $$\large{ mm }$$
$$\large{ h }$$ = height $$\large{ in }$$ $$\large{ mm }$$
$$\large{ \pi }$$ = Pi  $$\large{3.141 592 653 ...}$$
$$\large{ V }$$ = volume $$\large{ in^3 }$$ $$\large{ mm^3 }$$ ## Surface Area of a Right cylinder formula

$$\large{ A_s = 2\; \pi\; r\;h+2\; \pi\; r^2 }$$
Symbol English Metric
$$\large{ A_s }$$ = surface area (bottom, top, side) $$\large{ in^2 }$$ $$\large{ mm^2 }$$
$$\large{ h }$$ = height $$\large{ in }$$ $$\large{ mm }$$
$$\large{ r }$$ = radius $$\large{ in }$$ $$\large{ mm }$$ ## Volume of a Right cylinder formula

$$\large{ V = \pi\; r^2\;h }$$
Symbol English Metric
$$\large{ V }$$ = volume $$\large{ in^3 }$$ $$\large{ mm^3 }$$
$$\large{ h }$$ = height $$\large{ in }$$ $$\large{ mm }$$
$$\large{ r }$$ = radius $$\large{ in }$$ $$\large{ mm }$$ Tags: Volume Equations