# Right Elliptic Cylinder

on . Posted in Solid Geometry

• Elliptic cylinder (a three-dimensional figure) has a cylinder shape with elliptical ends.
• 2 bases

### Lateral Surface Area of a Right Elliptic Cylinder formula

$$A_l \approx h \; \left( 2\;\pi \;\sqrt {\; \frac{1}{2}\; \left(a^2 + b^2 \right) } \right)$$
Symbol English Metric
$$A_l$$ = approximate lateral surface area (side) $$in^2$$ $$mm^2$$
$$a$$ = length semi-major axis $$in$$ $$mm$$
$$b$$ = length semi-minor axis $$in$$ $$mm$$
$$h$$ = height $$in$$ $$mm$$

### Surface Area of a Right Elliptic Cylinder formula

$$A_s \approx h \; \left( 2\;\pi \;\sqrt {\; \frac{1}{2}\; \left(a^2 + b^2 \right) } \right) + 2\; \left( \pi \; a \; b \right)$$
Symbol English Metric
$$A_s$$ = approximate surface area (bottom, top, side) $$in^2$$ $$mm^2$$
$$a$$ = length semi-major axis $$in$$ $$mm$$
$$b$$ = length semi-minor axis $$in$$ $$mm$$
$$h$$ = height $$in$$ $$mm$$

### Volume of a Right Elliptic Cylinder formula

$$V = \pi\; a \;b\; h$$
Symbol English Metric
$$V$$ = volume $$in^3$$ $$mm^3$$
$$a$$ = length semi-major axis $$in$$ $$mm$$
$$b$$ = length semi-minor axis $$in$$ $$mm$$
$$h$$ = height $$in$$ $$mm$$

Tags: Cylinder