# Right Elliptic Cylinder

on . Posted in Solid Geometry

• Elliptic cylinder (a three-dimensional figure) has a cylinder shape with elliptical ends.
• 2 bases

Since there is no easy way to calculate the ellipse perimeter with high accuracy.  Calculating the laterial surface will be approximate also.

## Lateral Surface Area of a Right Elliptic Cylinder formula

$$\large{ A_l \approx h \; \left( 2\;\pi \;\sqrt {\; \frac{1}{2}\; \left(a^2 + b^2 \right) } \right) }$$
Symbol English Metric
$$\large{ A_l }$$ = approximate lateral surface area (side) $$\large{ in^2 }$$ $$\large{ mm^2 }$$
$$\large{ a }$$ = length semi-major axis $$\large{ in }$$ $$\large{ mm }$$
$$\large{ b }$$ = length semi-minor axis $$\large{ in }$$ $$\large{ mm }$$
$$\large{ h }$$ = height $$\large{ in }$$ $$\large{ mm }$$

## Surface Area of a Right Elliptic Cylinder formula

$$\large{ A_s \approx h \; \left( 2\;\pi \;\sqrt {\; \frac{1}{2}\; \left(a^2 + b^2 \right) } \right) + 2\; \left( \pi \; a \; b \right) }$$
Symbol English Metric
$$\large{ A_s }$$ = approximate surface area (bottom, top, side) $$\large{ in^2 }$$ $$\large{ mm^2 }$$
$$\large{ a }$$ = length semi-major axis $$\large{ in }$$ $$\large{ mm }$$
$$\large{ b }$$ = length semi-minor axis $$\large{ in }$$ $$\large{ mm }$$
$$\large{ h }$$ = height $$\large{ in }$$ $$\large{ mm }$$

## Volume of a Right Elliptic Cylinder formula

$$\large{ V = \pi\; a \;b\; h }$$
Symbol English Metric
$$\large{ V }$$ = volume $$\large{ in^3 }$$ $$\large{ mm^3 }$$
$$\large{ a }$$ = length semi-major axis $$\large{ in }$$ $$\large{ mm }$$
$$\large{ b }$$ = length semi-minor axis $$\large{ in }$$ $$\large{ mm }$$
$$\large{ h }$$ = height $$\large{ in }$$ $$\large{ mm }$$

Tags: Volume Equations