Skip to main content

Average Force

 

Average Force Formula

\( \bar F \;=\;  \dfrac{  \Delta p }{ \Delta t  } \)     (Average Force)

\( \Delta p \;=\;  \bar F  \cdot  \Delta t \)

\( \Delta t \;=\;  \dfrac{  \Delta p }{ \bar F  } \)

Symbol English Metric
\( \bar F \) = Average Force \( lbf \) \(N\) 
\( \Delta p \) = Change in Momentum \(lbm-ft\;/\;sec\)  \(kg-m\;/\;s\) 
\( \Delta t \) = Change in Time \( sec \) \( s \)

 Average force, abbrevated as \( \bar F\) or \(F_{avg}\), is the constant force that would produce the same overall change in an object’s momentum as the actual, possibly varying, force acting on it during a given time interval.  In many real situations, such as collisions, impacts, or any process where forces change rapidly, it is difficult to track the exact force at every moment.  Instead, average force provides a simplified but meaningful measure of the overall effect of the force.  This makes average force useful for understanding how strongly an object was pushed or pulled on average, even when the real force wasn’t constant.

Piping Designer Logo 1 

 

Average Force Formula

\( \bar F \;=\; \dfrac{ m \cdot  ( v_f - v_i ) }{ \Delta t } \)     (Average Force)

\( m  \;=\; \dfrac{ \bar F \cdot \Delta t  }{ v_f - v_i } \)

\( v_f  \;=\; \dfrac{ \bar F \cdot \Delta t  }{ m } + v_i  \)

\( v_i  \;=\;  v_f - \dfrac{ \bar F \cdot \Delta t  }{ m }  \)

\( \Delta t \;=\; \dfrac{ m \cdot  ( v_f - v_i ) }{ F } \)

Symbol English Metric
\( \bar F \) = Average Force \( lbf \) \(N\) 
\( m \) = Object Mass \( lbm \) \( kg \)
\( v_f \) = Final Velocity \(ft\;/\;sec\)   \(m\;/\;s\)  
\( v_i \) = Initial Velocity \(ft\;/\;sec\)   \(m\;/\;s\)  
\( \Delta t \) = Change in Time \( sec \) \( s \)