Water Flow Rate Through a Valve

on . Posted in Fluid Dynamics

    

Water Flow Rate Through a Valve formula

\( Q_w \;=\; C_v \; \sqrt { p_1 - p_2 \;/\; SG }   \)     (Water Flow Rate through a Valve)

\( C_v \;=\;    Q_w \; \sqrt{ SG }  \;/\;  \sqrt{ p_1 - p_2 }  \) 

\( p_1 \;=\; ( Q_w^2 \; SG  \;/\; C_v^2 ) + p_2  \) 

\( p_2 \;=\;   p_1 -  ( Q_w^2 \; SG  \;/\; C_v^2 )   \) 

\( SG \;=\; C_v^2 \; ( p_1 - p_2 ) \;/\; Q_w^2    \) 

Symbol English Metric
\( Q_w \) = water flow rate \(ft^3\;/\;sec\) \(m^3\;/\;s\)
\( C_v \) = valve flow coefficient \(dimensionless\) \(dimensionless\)
\( p_1 \) = primary pressure \(lbf\;/\;in^2\) \(Pa\)
\( p_2 \) = secondary pressure \(lbf\;/\;in^2\) \(Pa\)
\( SG \)  = water specific gravity \(dimensionless\) \(dimensionless\)

 

Water Flow Rate Through a Valve formula

\( Q_w \;=\; C_v \; F_l \;  \sqrt { p_1 - F_f \; p_{av} \;/\; SG  }  \)     (Water Flow Rate through a Valve)

\( C_v \;=\; \sqrt{ SG \; ( Q_w  \;/\; F_l )^2  \;/\;  p_1 - ( F_f \;  p_{av} )   }  \)

\( F_l \;=\; \sqrt{ SG \; ( Q_w  \;/\; C_v )^2  \;/\;  p_1 - ( F_f \;  p_{av} )   }   \)

\( p_1 \;=\; SG \; ( Q_w  \;/\; C_v \; F_l )^2  + ( F_f \;  p_{av} ) \)

\( F_f \;=\; p_1 -  ( SG \; ( Q_w  \;/\; C_v \; F_l )^2 ) \;/\;  p_{av}  \)

\( p_{av} \;=\; p_1 -  ( SG \; ( Q_w  \;/\; C_v \; F_l )^2 ) \;/\;  F_f \)

\( SG \;=\;   p_1 -  ( F_l \; p_{av} )  \;/\;  ( Q_w  \;/\; C_v \; F_l )^2  \)

Symbol English Metric
\( Q_w \) = water flow rate \(ft^3\;/\;sec\) \(m^3\;/\;s\)
\( C_v \) = valve flow coefficient \(dimensionless\) \(dimensionless\)
\( F_l \) = id pressure recovery factor (= 0.9) \(dimensionless\) \(dimensionless\)
\( p_1 \) = primary pressure \(lbf\;/\;in^2\) \(Pa\)
\( F_f \) = liquid critical pressure ratio factor \(dimensionless\) \(dimensionless\)
\( p_{av} \) = absolute vapor pressure of the water at inlet temperature \(lbf\;/\;in^2\) \(Pa\)
\( SG \) = water specific gravity \(dimensionless\) \(dimensionless\)

 

P D Logo 1

Tags: Flow Water Valve Sizing