# Gas Pressure Loss through Piping

on . Posted in Fluid Dynamics

## Gas Pressure Loss through Piping formula

$$\large{ p_l = \frac{ \mu \; l \; v_g^2 \; \rho }{ 2 \; d } }$$     (Gas Pressure Loss through Piping)

$$\large{ \mu = \frac { 2 \;d \; p_l }{ l \; v_g^2 \; \rho } }$$

$$\large{ l = \frac { 2 \;d \; p_l }{ \mu \; v_g^2 \; \rho } }$$

$$\large{ v_g = \sqrt{ \frac { 2 \;d \; p_l }{ \mu \; l \; \rho } } }$$

$$\large{ \rho = \frac { 2 \;d \; p_l }{ \mu \; l \; v_g^2 } }$$

$$\large{ d = \frac{ \mu \; l \; v_g^2 \; \rho }{ 2 \; p_l } }$$

Symbol English Metric
$$\large{ p_l }$$ = gas pressure loss  $$\large{\frac{lbf}{in^2}}$$  $$\large{Pa}$$
$$\large{ \mu }$$  (Greek symbol mu) = friction coefficient $$\large{dimensionless}$$
$$\large{ l }$$ = pipe length $$\large{ft}$$ $$\large{m}$$
$$\large{ v_g }$$ = velocity of gas $$\large{\frac{ft}{sec}}$$ $$\large{\frac{m}{s}}$$
$$\large{ \rho }$$  (Greek symbol rho) = density of gas $$\large{\frac{lbm}{ft^3}}$$ $$\large{\frac{kg}{m^3}}$$
$$\large{ d }$$ = inside diameter of pipe $$\large{in}$$ $$\large{mm}$$ 