Isobaric Process - Entropy in Terms of Pressure and Volume
Isobaric process is a thermodynamic process where the pressure is kept constant, \(\Delta p = 0\).
Isobaric process - entropy in terms of pressure and volume Formula |
||
\( S = \Delta S \; ( - n\; R ) \; [ \; ln \; ( p_f \;/\; p_i ) \; ] \) | ||
Symbol | English | Metric |
\( S \) = entropy | \(Btu \;/\; lbm-R\) | \(kJ \;/\;kg-K\) |
\( \Delta S \) = change in entropy | \(Btu \;/\; lbm-R\) | \(kJ \;/\;kg-K\) |
\( n \) = number of moles | \(dimensionless\) | |
\( R \) = molar gas constant | \(lbf-ft \;/\; lbmol-R\) | \(J \;/\; kmol-K\) |
\( ln \) = natural logarithm | \(dimensionless\) | |
\( p_f \) = final pressure | \(lbf \;/\; in^2\) | \(Pa\) |
\( p_i \) = initial pressure | \(lbf \;/\; in^2\) | \(Pa\) |
Isobaric process - entropy in terms of pressure and volume Formula |
||
\( S = \Delta S \; ( n\; R ) \; [ \; ln \; ( V_f \;/\; V_i ) \; ] \) | ||
Symbol | English | Metric |
\( S \) = entropy | \(Btu \;/\; lbm-R\) | \(kJ \;/\;kg-K\) |
\( \Delta S \) = change in entropy | \(Btu \;/\; lbm-R\) | \(kJ \;/\;kg-K\) |
\( n \) = number of moles | \(dimensionless\) | |
\( R \) = molar gas constant | \(lbf-ft \;/\; lbmol-R\) | \(J \;/\; kmol-K\) |
\( ln \) = natural logarithm | \(dimensionless\) | |
\( V_f \) = final volume | \(in^3\) | \(mm^3\) |
\(V_i \) = initial volume | \(in^3\) | \(mm^3\) |