Isobaric Process - Entropy in Terms of Pressure and Volume
Isobaric process is a thermodynamic process where the pressure is kept constant, \(\Delta p = 0\).
Isobaric process - entropy in terms of pressure and volume Formulas |
||
\(\large{ S = \Delta S \; \left( - n\; R \right) \; \left[ ln \left( \frac{p_f}{p_i} \right) \right] }\) \(\large{ S = \Delta S \; \left( n\; R \right) \; \left[ ln \left( \frac{V_f}{V_i} \right) \right] }\) |
||
Symbol | English | Metric |
\(\large{ S }\) = entropy | \(\large{\frac{Btu}{lbm-R}}\) | \(\large{\frac{kJ}{kg-K}}\) |
\(\large{ \Delta S }\) = change in entropy | \(\large{\frac{Btu}{lbm-R}}\) | \(\large{\frac{kJ}{kg-K}}\) |
\(\large{ R }\) = molar gas constant | \(\large{ \frac{lbf-ft}{lbmol-R} }\) | \(\large{ \frac{J}{kmol-K} }\) |
\(\large{ ln }\) = natural logarithm | \(\large{dimensionless}\) | |
\(\large{ n }\) = number of moles | \(\large{dimensionless}\) | |
\(\large{ p_f }\) = final pressure | \(\large{\frac{lbf}{in^2}}\) | \(\large{Pa}\) |
\(\large{ p_i }\) = initial pressure | \(\large{\frac{lbf}{in^2}}\) | \(\large{Pa}\) |
\(\large{ V_f }\) = final volume | \(\large{in^3}\) | \(\large{mm^3}\) |
\(\large{ V_i }\) = initial volume | \(\large{in^3}\) | \(\large{mm^3}\) |