Skip to main content

Radius of Gyration of a Circle

 

Radius of Gyration of a Circle formulas

\( k_{x} \;=\;   \dfrac{  r }{  2  }\) 

\( k_{y} \;=\;  \dfrac{  r }{  2 }\) 

\( k_{z} \;=\;   \dfrac{  \sqrt{2} }{ 2  } \cdot  r  \) 

\( k_{x1} \;=\;   \dfrac{ \sqrt{5}  }{ 2  } \cdot r  \)

\( k_{y1} \;=\;   \dfrac{  \sqrt{5}  }{ 2  } \cdot r \)

\( k_{z1} \;=\;   \dfrac{  \sqrt{10}  }{ 2 } \cdot r \)

Symbol English Metric
\( k \) = radius of gyration \( in \) \( mm \)
\( r \) = radius \( in \) \( mm \)

The radius of gyration of a circle about its center (perpendicular to its plane) is a measure of how its mass is distributed relative to the axis of rotation.  It is defined as the distance from the axis where the entire mass of the circle could be concentrated to produce the same moment of inertia.

2 overlapping circles 1

circle 17

 

 

 

 

 

Piping Designer Logo 1