Skip to main content

Rotational Motion Over Time

 

Rotational Motion Over Time Formula

\( \theta \;=\;  \omega_i \cdot t + \dfrac{1}{2} \cdot \alpha \cdot t^2   \)
Symbol English Metric
\( \theta \) (Greek symbol theta) = Rotational Motion Over Time \(deg\) \(rad\)
\( \omega_i \)   (Greek symbol omega) = Initial Angular Velocity \(deg \;/\; sec\) \(rad \;/\; s\)
\( \alpha \)  (Greek symbol alpha) = Angular Acceleration \(deg \;/\; sec^2\) \(rad \;/\; s^2\)
\( t \) = Time \(sec\) \(s\)

Rotational motion over time describes how the angular position, angular velocity, and angular acceleration of an object change as time progresses.  It's a fundamental concept in physics that helps us understand the movement of spinning or revolving objects (spinning of a top to the orbits of planets).

Piping Designer Logo 1