Standard Ellipse formulas |
||
\( \dfrac{ x^2}{a^2} + \dfrac{ y^2}{x^2} \;=\; 1 \) \( \left(\dfrac{ x}{a } \right)^2 + \left( \dfrac{ y}{x} \right)^2 \;=\; 1 \) \( \dfrac{ \left( x - h \right )^2 }{ a^2 } + \dfrac{ \left( y - k \right )^2 }{ b^2 } \;=\; 1 \) (Major Axis Horizontal) \( \dfrac{ \left( x - h \right )^2 }{ b^2 } + \dfrac{ \left( y - k \right )^2 }{ a^2 } \;=\; 1 \) (Major axis Vertical) |
||
Symbol | English | Metric |
\( x \) = horizontal coordinate of a point on the ellipse | \( in \) | \( mm \) |
\( y \) = vertical coordinate of a point on the ellipse | \( in \) | \( mm \) |
\( a \) = length semi-major axis | \( in \) | \( mm \) |
\( b \) = length semi-minor axis | \( in \) | \( mm \) |
\( h \) and \(\large{ k }\) = center point of ellipse | \( in \) | \( mm \) |
Area of an Ellipse formula |
||
\( A \;=\; \pi \cdot a \cdot b \) | ||
Symbol | English | Metric |
\( A \) = area | \( in^2 \) | \( mm^2 \) |
\( a \) = length semi-major axis | \( in \) | \( mm \) |
\( b \) = length semi-minor axis | \( in \) | \( mm \) |
\( \pi \) = Pi | \(3.141 592 653 ...\) | \(3.141 592 653 ...\) |
Circumference of an Ellipse formula |
||
\( C \;=\; 2 \cdot \pi \cdot \sqrt{ \dfrac{ a^2 + b^2 }{ 2 } } \) | ||
Symbol | English | Metric |
\( C \) = circumference | \( in \) | \( mm \) |
\( a \) = length semi-major axis | \( in \) | \( mm \) |
\( b \) = length semi-minor axis | \( in \) | \( mm \) |
\( \pi \) = Pi | \(3.141 592 653 ...\) | \(3.141 592 653 ...\) |
eccentricity of an Ellipse formula |
||
\( \epsilon \;=\; \sqrt{ \dfrac{ a^2 - b^2 }{ a^2 } } \) \( \epsilon \;=\; \left( \dfrac{ 1 - b^2 }{ a^2 } \right)^{0.5} \) \( \epsilon \;=\; \sqrt{ 1 - \dfrac{ b^2 }{ a^2 } } \) |
||
Symbol | English | Metric |
\( \epsilon \) (Greek symbol epsilon) = eccentricity | \( dimensionless \) | \( dimensionless \) |
\( a \) = one half of the ellipse's major axis | \( in \) | \( mm \) |
\( a \) = one half of the ellipse's minor axis | \( in \) | \( mm \) |
Perimeter of an Ellipse formulas
|
||
\( p \;\approx\; 2\cdot \pi \cdot \sqrt{ \dfrac{ 1}{2} \cdot \left(a^2 + b^2 \right) } \) \( p \;\approx\; 2 \cdot \pi \cdot \sqrt{ \dfrac{ a^2 + b^2}{2} }\) |
||
Symbol | English | Metric |
\( p \) = perimeter approximation | \( in \) | \( mm \) |
\( a \) = length semi-major axis | \( in \) | \( mm \) |
\( b \) = length semi-minor axis | \( in \) | \( mm \) |
\( \pi \) = Pi | \(3.141 592 653 ...\) | \(3.141 592 653 ...\) |
Latus Rectum of an Ellipse formula |
||
\( L \;=\; \dfrac{ 2 \cdot b^2 }{ a }\) | ||
Symbol | English | Metric |
\( L \) = Latus rectum | \( in \) | \( mm \) |
\( a \) = length semi-major axis | \( in \) | \( mm \) |
\( b \) = length semi-minor axis | \( in \) | \( mm \) |
Semi-major Axis Length of an Ellipse formula |
||
\( a \;=\; \dfrac{ A }{ \pi \cdot b }\) | ||
Symbol | English | Metric |
\( A \) = area | \( in^2 \) | \( mm^2 \) |
\( a \) = length semi-major axis | \( in \) | \( mm \) |
\( b \) = length semi-minor axis | \( in \) | \( mm \) |
\( \pi \) = Pi | \(3.141 592 653 ...\) | \(3.141 592 653 ...\) |
Semi-minor Axis Length of an Ellipse formula |
||
\( b \;=\; \dfrac{ A }{ \pi \cdot a }\) | ||
Symbol | English | Metric |
\( A \) = area | \( in^2 \) | \( mm^2 \) |
\( a \) = length semi-major axis | \( in \) | \( mm \) |
\( b \) = length semi-minor axis | \( in \) | \( mm \) |
\( \pi \) = Pi | \(3.141 592 653 ...\) | \(3.141 592 653 ...\) |