Area

Written by Jerry Ratzlaff on . Posted in Geometry

circle diameter 4

Area, abbreviated as A, is the square units of a given plane.

 

Formulas that use Area

\(\large{ A =  \pi \; r^2  }\)  (circle)
\(\large{ A =  \frac{ \pi \; d^2 }{ 4 }  }\)   
\(\large{ A =  \frac{ C \; r }{ 2 }  }\)   
\(\large{ A =  \frac{ C^2 }{ 4 \; \pi }  }\)  
\(\large{ A = \frac{F}{p} }\)  
\(\large{ A =  \frac{ Q }{ v }   }\)  
\(\large{ A = a_c^2 }\)  (cube face area)
\(\large{ A = 6\;a_c^2 }\)  (cube surface face area)
\(\large{ A = \pi \;a_e\; b_e }\) (ellipse)
\(\large{ A = \frac{F}{\sigma} }\) (force)
\(\large{ A = \frac{2 \; L}{ C_l \; \rho \; v^2}   }\) (lift force)

Where:

\(\large{ A }\) = area

\(\large{ C }\) = circumference

\(\large{ a_c }\) = cube edge

\(\large{ \rho }\)  (Greek symbol rho) = density

\(\large{ Q }\) = flow rate

\(\large{ F }\) = force

\(\large{ a_e }\) = ellipse length semi-major axis

\(\large{ b_e }\) = ellipse length semi-minor axis

\(\large{ C_l }\) = lift coefficient

\(\large{ L }\) = lift force

\(\large{ \pi }\) = Pi

\(\large{ p }\) = pressure

\(\large{ r }\) = radius

\(\large{ \sigma }\)  (Greek symbol sigma) = stress

\(\large{ v }\) = velocity

\(\large{ \sigma }\)  (Greek symbol sigma) = yield strength