Average Acceleration

Written by Jerry Ratzlaff on . Posted in Classical Mechanics

Average acceleration, abbreviated as \( \bar {a} \), is the change of velocity over an elapsed amount of time.  Whereas, instantaneous accleration is the change of velocity at a specific point in time.  As an example, if a vehicle is initially traveling at 100 feet per second and slows down to 50 feet per second over 60 seconds, the average acceleration over 60 seconds is - 8.3 ft per second.  The equation and calulation for average acceleration is shown below. 

 

Average Acceleration Calculator

   
 

Average Acceleration formulas

\(\large{ \bar {a} = \frac { \Delta v } { \Delta t }  }\)   
\(\large{ \bar {a} = \frac { v_f \;-\; v_i } { t_f \;-\; t_i }   }\)   

Where:

Units English SI
 \(\large{ \bar {a} }\) = average acceleration  \(\large{\frac{ft}{sec^2)}}\)  \(\large{\frac{m}{sec^2)}}\)
 \(\large{ t_f }\) = final time \(\large{ seconds}\)  \(\large{\frac{m}{sec}}\)
 \(\large{ t_i }\) = initial time \(\large{ seconds}\) 
 \(\large{ v_f }\) = final velocity \(\large{\frac{ft}{sec}}\)  \(\large{\frac{m}{sec}}\)
 \(\large{ v_i }\) = initial velocity \(\large{\frac{ft}{sec}}\)  \(\large{\frac{m}{sec}}\)
 \(\large{ \Delta t }\) = time differential \(\large{ seconds}\)
 \(\large{ \Delta v }\) = velocity differential \(\large{\frac{ft}{sec}}\)  \(\large{\frac{m}{sec}}\)
 

Tags: Equations for Acceleration Calculators