Initial Length

Written by Jerry Ratzlaff on . Posted in Classical Mechanics

Initial Length Formulas

\(\large{ l_i =  \frac{ l_f }{ \overrightarrow{\alpha_l}  \; \left( T_f \;- \; T_i \right) \;+\; 1 }  }\)  (linear thermal expansion coefficient
\(\large{ l_i = \frac{ \Delta l }{ \epsilon }  }\)  (strain)

Where:

 Units English Metric
\(\large{ l_i }\) = initial length \(\large{ft}\) \(\large{m}\)
\(\large{ l_f }\) = final length \(\large{ft}\) \(\large{m}\)
\(\large{ \Delta l }\) = length differential \(\large{ft}\) \(\large{m}\)
\(\large{ \overrightarrow{\alpha_l} }\)   (Greek symbol alpha) = linear thermal expansion coefficient \(\large{ \frac{1}{F} }\) \(\large{ \frac{1}{C} }\)
\(\large{ \epsilon }\)  (Greek symbol epsilon) = strain \(\large{ \frac{in}{in} }\) \(\large{\frac{mm}{mm}}\)
\(\large{ T_f }\) = final temperature \(\large{F}\) \(\large{C}\)
\(\large{ T_i }\) = initial temperature \(\large{F}\) \(\large{C}\)

 

 

Tags: Length Equations