Final Temperature

Written by Jerry Ratzlaff on . Posted in Thermodynamics

Final Temperature formulas

\(\large{ T_f =  \frac{ l_f \;- \; l_i }{ \overrightarrow{\alpha_l} \; l_i }  + T_i }\)  (linear thermal expansion coefficient)
\(\large{ T_f =  \frac{ v_f \;- \; v_i }{ a_v \; v_i }  + T_i }\)  (volumetric thermal expansion coefficient)

Where:

 Units English Metric
\(\large{ T_f }\) = final temperature \(\large{ F }\) \(\large{ C }\)
\(\large{ l_f }\) = final length \(\large{ in }\) \(\large{ mm }\)
\(\large{ l_i }\) = initial length \(\large{ in }\) \(\large{ mm }\)
\(\large{ \overrightarrow{\alpha_l} }\)   (Greek symbol alpha) = linear thermal expansion coefficient \(\large{ \frac{in}{in\;F} }\) \(\large{ \frac{mm}{mm\;C} }\)
\(\large{ T_i }\) = initial temperature \(\large{ F }\) \(\large{ C }\)
\(\large{ v_f }\) = final velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)
\(\large{ v_i }\) = initial velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)
\(\large{ \alpha_v }\)  (Greek symbol alpha) = volumetric thermal expansion coefficient \(\large{ \frac{in^3}{in^3\;F} }\) \(\large{ \frac{mm^3}{mm^3\;C} }\)

 

P D Logo 1

Tags: Temperature Equations