Linear Motion

on . Posted in Classical Mechanics

linear motion 1Linear motion is a one direction motion on a one dimensional plane using acceleration, displacement, and velocity.

 

Linear motion formula

\(\large{ \overrightarrow{a} =  \frac{ \Delta v }{ \Delta t }  }\) 
Symbol English Metric
\(\large{ \overrightarrow{a} }\) = linear acceleration \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\)
\(\large{ \Delta t }\) = time differential \(\large{ sec }\) \(\large{ s }\)
\(\large{ \Delta v }\) = velocity differential \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)

 

Linear motion formula

\(\large{ \overrightarrow{d} = v_i\; t + \frac{1}{2} a\;t^2  }\) 
Symbol English Metric
\(\large{ \overrightarrow{d} }\) = linear displacement \(\large{ ft }\)  \(\large{ m }\) 
\(\large{ a }\) = acceleration \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\)
\(\large{ v_i }\) = initial velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)
\(\large{ t }\) = time \(\large{ sec }\) \(\large{ s }\)

 

Linear motion formula

\(\large{ \overrightarrow{d} =  \frac{1}{2} \; \left( v_f + v_i \right) \; t  }\) 
Symbol English Metric
\(\large{ \overrightarrow{d} }\) = linear displacement \(\large{ ft }\)  \(\large{ m }\) 
\(\large{ a }\) = acceleration \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\)
\(\large{ v_i }\) = initial velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)
\(\large{ t }\) = time \(\large{ sec }\) \(\large{ s }\)

 

Linear motion formula

\(\large{ \overrightarrow{v_f} =  v_i + a\;t  }\) 
Symbol English Metric
\(\large{ \overrightarrow{v_f} }\) = linear final velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)
\(\large{ a }\) = acceleration \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\)
\(\large{ v_i }\) = initial velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)
\(\large{ t }\) = time \(\large{ sec }\) \(\large{ s }\)

 

Piping Designer Logo 1 

Tags: Motion Equations