Morton Number

on . Posted in Dimensionless Numbers

Morton number, abbreviated as Mo, a dimensionless number, is the shape of bubbles or drops moving in a surrounding fluid or continuous phase.


Morton Number formula

\(\large{ Mo = \frac{ g \; \mu^4 \; \Delta \rho }{\rho^2 \; \sigma^3 } }\) 
Symbol English Metric
\(\large{ Mo }\) = Morton number \(\large{dimensionless}\)
\(\large{ g }\) = gravitational acceleration  \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\)
\(\large{ \mu }\) (Greek symbol mu) = dynamic viscosity of surrounding fluid \(\large{\frac{lbf-sec}{ft^2}}\) \(\large{ Pa-s }\)
\(\large{ \Delta \rho }\) = density differential in the phases \(\large{\frac{lbm}{ft^3}}\) \(\large{\frac{kg}{m^3}}\)
\(\large{ \rho }\) (Greek symbol rho) = density of surrounding fluid \(\large{\frac{lbm}{ft^3}}\) \(\large{\frac{kg}{m^3}}\)
\(\large{ \sigma }\) (Greek symbol sigma) = surface tension coefficient \(\large{\frac{lbf}{ft}}\) \(\large{\frac{N}{m}}\)


P D Logo 1 

Tags: Fluid