Exponent
Laws of Exponents
Exponent (also called Indices, the plural of index) is how mant times you multiply the number.
\( a^m = a \;\) is base, \(\; m \;\) is exponent
Laws of Exponents Formulas
\( a^0 \;=\; 1 \)
\( a^1 \;=\; a \)
\( a^m \;=\; \frac{1} {a^{-m} } \)
\( a^{-m} \;=\; \frac{1}{a^{m} } \)
\( a^{ \frac{1} {m} } \;=\; ^m \sqrt {a} \)
\( a^{ \frac{m} {n} } \;=\; ^n \sqrt {a ^m} \)
\( \frac {a^m} {a^n} \;=\; ^n \sqrt {a^{m-n} } \)
\( a^m * a^n \;=\; a^{m+n} \)
\( \left( a^m \right)^n \;=\; a^{mn} \)
\( \left( a * b \right)^m \;=\; a^{m} * a^{n} \)
\( \left( \frac {a} {b} \right)^m \;=\; \frac {a^m} {b^m} \)

