Skip to main content

Torque for Angular Acceleration and Moment of Inertia

 

Torque for Angular Acceleration and Moment of Inertia Formula

 \( \tau \;=\; I \cdot \alpha \)     (Torque for Angular Acceleration and Moment of Inertia)

\( I \;=\; \dfrac{ \tau }{ \alpha } \)

\( \alpha \;=\; \dfrac{ \tau }{ I } \)

Symbol English Metric
\( \tau \)  (Greek symbol tau) = Torque \(lbf-ft\) \(N-m\)
\( I \) = Moment of Inertia \(lbm \;/\; ft^2-sec\) \(kg \;/\; m^2\)
\( \alpha \)  (Greek symbol alpha) = Angular Acceleration \(deg \;/\; sec^2\) \(rad \;/\; s^2\)

Torque is the twisting force that causes an object to rotate about an axis.  The moment of inertia depends on the object’s mass distribution relative to the axis of rotation.

Piping Designer Logo 1