Torque for Angular Acceleration and Moment of Inertia Formula |
||
\( \tau \;=\; I \cdot \alpha \) (Torque for Angular Acceleration and Moment of Inertia) \( I \;=\; \dfrac{ \tau }{ \alpha } \) \( \alpha \;=\; \dfrac{ \tau }{ I } \) |
||
Symbol | English | Metric |
\( \tau \) (Greek symbol tau) = Torque | \(lbf-ft\) | \(N-m\) |
\( I \) = Moment of Inertia | \(lbm \;/\; ft^2-sec\) | \(kg \;/\; m^2\) |
\( \alpha \) (Greek symbol alpha) = Angular Acceleration | \(deg \;/\; sec^2\) | \(rad \;/\; s^2\) |
Torque is the twisting force that causes an object to rotate about an axis. The moment of inertia depends on the object’s mass distribution relative to the axis of rotation.