Water Hammer Unit Weight of Fluid
| Water Hammer Unit Weight of Fluid Formula | ||
| \(\large{ \gamma_f \;=\; \dfrac{ 144\cdot p_{sf} \cdot g }{ \alpha \cdot \Delta v } }\) (Water Hammer Unit Weight of Fluid) \(\large{ \alpha \;=\; \dfrac{ 144\cdot p_{sf} \cdot g }{ \gamma_f \cdot \Delta v } }\) \(\large{ 144 \;=\; \dfrac{ \gamma_f \cdot \alpha \cdot \Delta v }{ p_{sf} \cdot \Delta v } }\) \(\large{ p_{sf} \;=\; \dfrac{ \gamma_f \cdot \alpha \cdot \Delta v }{144 \cdot g } }\) \(\large{ g \;=\; \dfrac{ \gamma_f \cdot \alpha \cdot \Delta v }{ 144 \cdot p_{sf} } }\) \(\large{ \Delta v \;=\; \dfrac{ 144\cdot p_{sf} \cdot g }{ \gamma_f \cdot \alpha } }\) | ||
| Symbol | English | Metric | 
| \(\large{ \gamma_f } \) (Greek symbol gamma) = unit weight of fluid | \(lbm\;/\;ft^3\) | - | 
| \(\large{ \alpha }\) (Greek symbol alpha) = pressure wave velocity | \(ft\;/\;sec\) | - | 
| \(\large{ \Delta v }\) = fluid velocity change | \(ft\;/\;sec\) | - | 
| \(\large{ g }\) = gravitational acceleration | \(ft\;/\;sec^2\) | - | 
| \(\large{ p_{spf} }\) = maximum surge pressure for fluid | \(lbf\;/\;in^2\) | - | 

