Skip to main content

Pressure at Bottom of the Column

 

Pressure at Bottom of the Column Formula

\( p_b \;=\;  p_t + \rho \cdot g \cdot h  \)     (Pressure at the Bottom of the Column)

\( p_t \;=\;   \rho \cdot g \cdot h  - p_b \)

\( \rho \;=\;  \dfrac{  p_b - p_t  }{  g \cdot h  }\)

\( g \;=\;  \dfrac{  p_b - p_t  }{  \rho \cdot h  }\)

\( h  \;=\;  \dfrac{  p_b - p_t  }{  \rho \cdot g  }\)

 Units English Metric
\( p_b \) = Pressure at the Bottom of the Column \(lbf \;/\; in^2\) \(Pa\) 
\( p_t \) = Pressure at the Top of the Column \(lbf \;/\; in^2\) \(Pa\)
\( \rho \)   (Greek symbol rho) = Fluid Density \(lbm \;/\; ft^3\) \(kg \;/\; m^3\)
\( g \) = Gravitational Acceleration  \(ft \;/\; sec^2\) \(m \;/\; s^2\)
\( h \) = Height of Depth of the Liquid Column \(ft\) \(m\)
Pressure at the bottom of a column of fluid is determined by the weight of the fluid above it pressing down on a given area.  This pressure, often referred to as hydrostatic pressure, increases with the depth of the fluid.  Therefore, a taller column of the same fluid will exert greater pressure at its base compared to a shorter column.  Additionally, a denser fluid will result in higher pressure at the same depth compared to a less dense fluid.  It's important to note that this calculation typically considers the pressure due to the fluid itself and does not include any external pressure that might be acting on the surface of the fluid.
Piping Designer Logo 1