Fillet Weld Under Axial Torsional Loading
Fillet Weld Under Axial Torsional Loading formulas |
||
\( \tau_{shear} = F \;/\; ( 2 \; d \; l ) \) \( I = 2\; [\; ( l \; d^3 \;/\; 12 ) + ( d \; l^3 \;/\; 12 ) + l \; d \; d_0^2 \;] \) \( l_r = \sqrt{ ( l \;/\; 2 )^2 + d_0^2 } \) \( \tau_{torsion} = ( F \; D_0 \; l_r ) \;/\; I \) \( \theta = ( tan^{ -1 } \; 0.5 \; l ) \;/\; d_0 \) |
||
Symbol | English | Metric |
\( \theta \) = angle enclosed | \(deg\) | \(rad\) |
\( F \) = applied force | \( lbf \) | \( N\) |
\( D_0 \) = distance from centeroid of weld group to applied force | \(in\) | \(mm\) |
\( d_0 \) = distance from centeroid of weld group to centerline of weld | \(in\) | \(mm\) |
\( l \) = length of weld | \(in\) | \(mm\) |
\( \tau_{max} \) (Greek symbol tau) = maximum shear stress in weld | \(lbf\;/\;in^2\) | \(Pa\) |
\( I \) = polar moment of interia | \(in^4\) | \(mm^4\) |
\( l_r \) = radial distance to farthest point on weld | \(in\) | \(mm\) |
\( \tau_{shear} \) (Greek symbol tau) = shear stress in weld due to shear force | \(lbf\;/\;in^2\) | \(Pa\) |
\( \tau_{torsion} \) (Greek symbol tau) = shear stress in weld due to torsion | \(lbf\;/\;in^2\) | \(Pa\) |
\( d \) = throat depth of weld | \(in\) | \(mm\) |