Fillet Weld Under Axial Torsional Loading

on . Posted in Structural Engineering

    

Fillet Weld Under Axial Torsional Loading formulas

\( \tau_{shear} =  F \;/\; ( 2 \; d \; l ) \) 

\( I = 2\; [\; ( l \; d^3 \;/\; 12 )  + ( d \; l^3 \;/\; 12 )  + l \; d \; d_0^2  \;]  \)

\( l_r =   \sqrt{ ( l \;/\; 2 )^2 + d_0^2  }  \)  

\( \tau_{torsion} = ( F \; D_0 \; l_r ) \;/\; I   \)

\( \theta = ( tan^{ -1 }  \;  0.5 \; l ) \;/\; d_0  \)

Symbol English Metric
\( \theta \) = angle enclosed \(deg\) \(rad\)
\( F \) = applied force \( lbf \) \( N\)
\( D_0 \) = distance from centeroid of weld group to applied force \(in\) \(mm\)
\( d_0 \) = distance from centeroid of weld group to centerline of weld \(in\) \(mm\)
\( l \) = length of weld \(in\) \(mm\)
\( \tau_{max} \)  (Greek symbol tau) = maximum shear stress in weld \(lbf\;/\;in^2\) \(Pa\)
\( I \) = polar moment of interia \(in^4\) \(mm^4\)
\( l_r \) = radial distance to farthest point on weld \(in\) \(mm\)
\( \tau_{shear} \)  (Greek symbol tau) = shear stress in weld due to shear force \(lbf\;/\;in^2\) \(Pa\)
\( \tau_{torsion} \)  (Greek symbol tau) = shear stress in weld due to torsion \(lbf\;/\;in^2\) \(Pa\)
\( d \) = throat depth of weld \(in\) \(mm\)

 

Piping Designer Logo Slide 1

Tags: Structural Steel Pipe Support Welding