Fillet Weld Under Axial Torsional Loading formulas |
||
\( \tau_{shear} \;=\; \dfrac{ F }{ 2 \cdot d \cdot l }\) \( I \;=\; 2\cdot \left( \dfrac{ l \cdot d^3 }{ 12 } + \dfrac{ d \cdot l^3 }{ 12 } + l \cdot d \cdot d_0^2 \right) \) \( l_r \;=\; \sqrt{ \left( \dfrac{ l }{ 2 } \right )^2 + d_0^2 } \) \( \tau_{torsion} \;=\; \dfrac{ F \cdot D_0 \cdot l_r }{ I }\) \( \theta \;=\; \dfrac{ tan^{ -1 } \cdot 0.5 \cdot l }{ d_0 }\) |
||
Symbol | English | Metric |
\( \theta \) = Angle Enclosed | \(deg\) | \(rad\) |
\( F \) = Applied Force | \( lbf \) | \( N\) |
\( D_0 \) = Distance from Centeroid of Weld Group to Applied Force | \(in\) | \(mm\) |
\( d_0 \) = Distance from Centeroid of Weld Group to Centerline of Weld | \(in\) | \(mm\) |
\( l \)= Weld Length | \(in\) | \(mm\) |
\( \tau_{max} \) (Greek symbol tau) = Maximum Weld Shear Stress | \(lbf\;/\;in^2\) | \(Pa\) |
\( I \) = Polar Moment of Interia | \(in^4\) | \(mm^4\) |
\( l_r \) = Weld Radial Distance to Farthest Point | \(in\) | \(mm\) |
\( \tau_{shear} \) (Greek symbol tau) = Shear Stress in Weld due to Shear Force | \(lbf\;/\;in^2\) | \(Pa\) |
\( \tau_{torsion} \) (Greek symbol tau) = Shear Stress in Weld due to Torsion | \(lbf\;/\;in^2\) | \(Pa\) |
\( d \) = Weld Throat Depth | \(in\) | \(mm\) |