Skip to main content

Fillet Weld Under Axial Torsional Loading

    

Fillet Weld Under Axial Torsional Loading formulas

\( \tau_{shear} \;=\;  \dfrac{  F }{  2 \cdot d \cdot l  }\) 

\( I \;=\; 2\cdot  \left(  \dfrac{ l \cdot d^3 }{ 12 }      +      \dfrac{ d \cdot l^3 }{ 12 }     +      l \cdot d \cdot d_0^2  \right)  \)

\( l_r \;=\;   \sqrt{   \left(   \dfrac{  l }{ 2 }  \right )^2 + d_0^2  }  \)  

\( \tau_{torsion} \;=\;  \dfrac{ F \cdot D_0 \cdot l_r  }{  I  }\)

\( \theta \;=\;   \dfrac{ tan^{ -1 }  \cdot  0.5 \cdot l  }{ d_0  }\)

Symbol English Metric
\( \theta \) = Angle Enclosed \(deg\) \(rad\)
\( F \) = Applied Force \( lbf \) \( N\)
\( D_0 \) = Distance from Centeroid of Weld Group to Applied Force \(in\) \(mm\)
\( d_0 \) = Distance from Centeroid of Weld Group to Centerline of Weld \(in\) \(mm\)
\( l  \)= Weld Length \(in\) \(mm\)
\( \tau_{max} \)  (Greek symbol tau) = Maximum Weld Shear Stress \(lbf\;/\;in^2\) \(Pa\)
\( I \) = Polar Moment of Interia \(in^4\) \(mm^4\)
\( l_r \) = Weld Radial Distance to Farthest Point \(in\) \(mm\)
\( \tau_{shear} \)  (Greek symbol tau) = Shear Stress in Weld due to Shear Force \(lbf\;/\;in^2\) \(Pa\)
\( \tau_{torsion} \)  (Greek symbol tau) = Shear Stress in Weld due to Torsion \(lbf\;/\;in^2\) \(Pa\)
\( d \) = Weld Throat Depth \(in\) \(mm\)

 

Piping Designer Logo Slide 1