# Pipe Sizing for Condensate Recovery

Written by Jerry Ratzlaff on . Posted in Fluid Dynamics

## Condensate Recovery Pressure Loss through piping Formula

 $$\large{ p_l = \frac { 1000 \; \mu \; l \; v_c{^2} } {2\;d \; V_{temp} } }$$

### Where:

$$\large{ p_l }$$ = condensate pressure loss

$$\large{ v_c }$$ = condensate velocity

$$\large{ \mu }$$  (Greek symbol mu) = friction coefficient

$$\large{ d }$$ = inside diameter of pipe

$$\large{ l }$$ = pipe length

$$\large{ V_{temp} }$$ = temporary specific volume variable

## Condensate Recovery Velocity through piping Formula

 $$\large{ v_c = \frac { 1000\;m_c \; V_{temp} } { 3.6\; \pi \; { \left( \frac {d}{2} \right) ^2 } } }$$

### Where:

$$\large{ v_c }$$ = condensate velocity

$$\large{ m_c }$$ = condensate load

$$\large{ d }$$ = inside diameter of pipe

$$\large{ \pi }$$ = Pi

$$\large{ V_{temp} }$$ = temporary specific volume variable

## Condensate Recovery Steam Pressure Loss through piping Formula

 $$\large{ p_l = \frac { \mu \; l \; v_s{^2} } {2\;d \; V_{temp} } }$$

### Where:

$$\large{ p_l }$$ = steam pressure loss

$$\large{ \mu }$$  (Greek symbol mu) = friction coefficient

$$\large{ d }$$ = inside diameter of pipe

$$\large{ l }$$ = pipe length

$$\large{ v_s }$$ = steam velocity

$$\large{ V_{temp} }$$ = temporary specific volume variable