Continuity Equation for Area

on . Posted in Fluid Dynamics

Continuity equation is the moving of a quantity through a pipe in a steady flow.  This formula calculates the initial cross-section area of the pipe.

 

continuity equation 1

Continuity Equation for Area formula

This formula calculates the initial cross-section area of the pipe.

\( A_1 =  \rho_2 \; A_2 \; v_2 \;/\; v_1 \; \rho_1 \)     (Continuity Equation for Area Formula) 

\( \rho_2 =  A_1 \; v_1 \; \rho_1 \;/\; A_2 \; v_2 \)

\( A_2 =  A_1 \; v_1 \; \rho_1 \;/\; \rho_2 \; v_2 \)

\( v_2 =  A_1 \; v_1 \; \rho_1 \;/\; \rho_2 \; A_2 \)

\( v_1 =  \rho_2 \; A_2 \; v_2 \;/\; A_1 \; \rho_1 \)

\( \rho_1 =  \rho_2 \; A_2 \; v_2 \;/\; A_1 \; v_1 \)

Symbol English Metric
\( A_1 \) = initial area cross-section \(in^2\) \(mm^2\)
\( \rho_2 \)  (Greek symbol rho) =  final cross-section density \(lbm / ft^3\) \(kg / m^3\)
\( A_2 \) = final area cross-section \(in^2\) \(mm^2\)
\( v_2 \) = final cross-section velocity \(ft / sec\) \(m / s\)
\( v_1 \) = initial cross-section velocity \(ft / sec\) \(m / s\)
\( \rho_1 \)  (Greek symbol rho) =  initial cross-section density \(lbm / ft^3\) \(kg / m^3\)

     

P D Logo 1 

Tags: Flow Area