Volumetric Thermal Expansion Coefficient

Written by Jerry Ratzlaff on . Posted in Thermodynamics

Volumetric thermal expansion coefficient, abbreviated as \(\alpha_v\) (Greek symbol alpha), also called coefficient of volumetric thermal expansion, is the ratio of the change in size of a material to its change in temperature.

 

Volumetric thermal expansion coefficient Formulas

\(\large{ \alpha_v  =  \frac { 1 }{ V } \; \frac {\Delta V } {\Delta T}   }\)   
\(\large{ \alpha_v  =  \frac{ v_f \;-\; v_i }{ v_i \; \left( T_f \;-\; T_i  \right)   }   }\)   
\(\large{ \alpha_v  =  3 \;  \overrightarrow{\alpha_l}   }\)  

Where:

 Units English Metric
\(\large{ \alpha_v }\)  (Greek symbol alpha) = volumetric thermal expansion coefficient \(\large{ \frac{in^3}{in^3\;F} }\) \(\large{ \frac{mm^3}{mm^3\;C} }\)
\(\large{ \overrightarrow{\alpha_l} }\)   (Greek symbol alpha) = linear thermal expansion coefficient \(\large{ \frac{in}{in\;F} }\) \(\large{ \frac{mm}{mm\;C} }\)
\(\large{ \Delta T }\) = temperature change \(\large{F}\)  \(\large{C}\) 
\(\large{ T_f }\) = final temperature \(\large{F}\) \(\large{C}\)
\(\large{ T_i }\) = initial temperature \(\large{F}\) \(\large{C}\)
\(\large{ v_f }\) = final velocity \(\large{ \frac{ft}{sec} }\)  \(\large{ \frac{m}{s} }\) 
\(\large{ v_i }\) = initial velocity \(\large{ \frac{ft}{sec} }\)   \(\large{ \frac{m}{s} }\)  
\(\large{ V }\) = volume of object   \(\large{in^3}\)  \(\large{mm^3}\)  
\(\large{ \Delta V }\) = volume change  \(\large{in^3}\)  \(\large{mm^3}\)  
\(\large{ V_f }\) = final volume  \(\large{in^3}\)  \(\large{mm^3}\)  
\(\large{ V_i }\) = initial volume  \(\large{in^3}\) \(\large{mm^3}\) 

 

P D Logo 1 

Tags: Thermal Equations Coefficient Equations Expansion Equations