Right Trapezoid
 Right trapezoid (a two-dimensional figure) is a trapezoid with only one pair of parallel edges and two adjacent right angles. Right trapezoid (a two-dimensional figure) is a trapezoid with only one pair of parallel edges and two adjacent right angles.
- Acute angle is an angle that measures less than 90°.
- Obtuse angle is an angle that measures more than 90°.
- a & c are bases
- b & d are legs
- a ∥ c
- a ≠ c
- b ≠ d
- ∠A < 90°
- ∠B > 90°
- ∠C = ∠D
- ∠A + ∠B = 180°
- ∠C + ∠D = 180°
| Angle of a Right Trapezoid formulas | ||
| \( x \;=\; 90° - arccos \left( \dfrac{ d^2 + b^2 - \left(a - c \right)^2 }{ 2 \cdot d\cdot b } \right) \) \( y \;=\; 180° - x \) | ||
| Symbol | English | Metric | 
| \( x \) = acute angles | \( deg\) | \( rad\) | 
| \( y \) = obtuce angles | \( deg\) | \( rad\) | 
| \( a, b, c, d \) = edge | \( in\) | \( mm \) | 
| Area of a Right Trapezoid formula | ||
| \( A_{area} \;=\; \dfrac{1}{2} \cdot d \cdot \left( a + c \right) \) | ||
| Symbol | English | Metric | 
| \( A_{area} \) = area | \( in^2\) | \( mm^2 \) | 
| \( a, b, c, d \) = edge | \( in\) | \( mm \) | 
| Diagonal of a Right Trapezoid formulas | ||
| \( d' \;=\; \sqrt{c^2 + d^2} \) \( D' \;=\; \sqrt{a^2 + d^2} \) | ||
| Symbol | English | Metric | 
| \( d', D' \) = diagonal | \( in\) | \( mm \) | 
| \( a, b, c, d \) = edge | \( in\) | \( mm \) | 
| Midline of a Right Trapezoid formula | ||
| \( m \;=\; \dfrac{ a + c}{2} \) | ||
| Symbol | English | Metric | 
| \( m \) = midline | \( in\) | \( mm \) | 
| \( a, b, c, d \) = edge | \( in\) | \( mm \) | 
| Perimeter of a Right Trapezoid formula | ||
| \( P \;=\; a + b + c + d \) | ||
| Symbol | English | Metric | 
| \( P \) = perimeter | \( in\) | \( mm \) | 
| \( a, b, c, d \) = edge | \( in\) | \( mm \) | 
| Side of a Right Trapezoid formulas | ||
| \( b \;=\; \sqrt{ \left( a - c \right)^2 + d^2 } \) \( d \;=\; \sqrt{ b^2 - \left( a - c \right)^2 } \) | ||
| Symbol | English | Metric | 
| \( b, d \) = edge | \( in\) | \( mm \) | 
| \( a, c \) = edge | \( in\) | \( mm \) | 

