Self-intersecting Rectangle
 Self-intersecting rectangle (a two-dimensional figure) is where one edge crosses over another. Self-intersecting rectangle (a two-dimensional figure) is where one edge crosses over another.
- Acute angle measures less than 90°.
- Obtuse angle measures more than 90°.
- x, y, z < 90°
- w > 90°
- b ∥ d
- a = c
- b = d
- e = f
- ∠A = ∠B = ∠C = ∠D
- ∠z + ∠w = 180°
- ∠x + ∠y + ∠z = 180°
- 4 edges
- 4 vertexs
| Area of a Self-intersecting Rectangle formula | ||
| \( A_{area} \;=\; \dfrac{a \cdot b}{2} \) | ||
| Symbol | English | Metric | 
| \( A_{area} \) = area | \( in^2\) | \( mm^2 \) | 
| \( b, e \) = edge | \( in\) | \( mm \) | 
| Angle of a Self-intersecting Rectangle formulas | ||
| \( x \;=\; \dfrac{180° - z}{2} \) \( z \;=\; arccos \left( \dfrac{2\cdot e^2 - b^2}{2\cdot e^2} \right) \) \( w \;=\; 180° - z \) | ||
| Symbol | English | Metric | 
| \( x, y, z \) = angle | \( deg\) | \( rad\) | 
| \( w \) = intersection angle | \( in\) | \( mm \) | 
| \( b, e \) = edge | \( in\) | \( mm \) | 
| Edge of a Self-intersecting Rectangle formula | ||
| \( e \;=\; \dfrac{ \sqrt {a^2 + b^2} }{2} \) | ||
| Symbol | English | Metric | 
| \( e \) = edge | \( in\) | \( mm \) | 
| \( a, b \) = edge | \( in\) | \( mm \) | 
| Perimeter of a Self-intersecting Rectangle formula | ||
| \( p \;=\; 2\cdot b + 4 \cdot e \) | ||
| Symbol | English | Metric | 
| \( p \) = perimeter | \( in\) | \( mm \) | 
| \( b, e \) = edge | \( in\) | \( mm \) | 

