Change in Angular Momentum
| Change in Angular Momentum Formula | ||
| \( \Delta L \;=\; \tau_n \cdot \Delta t \) (Change in Angular Momentum) \( \tau_n \;=\; \dfrac{ \Delta L }{ \Delta t }\) \( \Delta t \;=\; \dfrac{ \Delta L }{ \tau_n }\) | ||
| Symbol | English | Metric | 
| \( \Delta L \) = change in Angular Momentum | \(lbm-ft^2 \;/\; sec\) | \(kg-m^2 \;/\; s\) | 
| \( \tau_n \) (Greek symbol tau) = Net Torque | \( lbf-ft \) | \( N-m\) | 
| \( \Delta t \) = Time Differential | \( sec \) | \( s \) | 
Change in angular momentum, abbreviated as \(\Delta L\), is the porportion of the average net torque and the time interval the torque is applied to.

