Skip to main content

Average Impact Force

 

Average Impact Force Formula

\( \bar {F} \;=\;  \dfrac{ \Delta p }{ \Delta t } \)     (Average Impact Force)

\( \Delta p \;=\;\bar {F} \cdot  \Delta t   \)

\( \Delta t \;=\;  \dfrac{  \Delta p  }{ \bar {F}  }  \)

Symbol English Metric
\( \bar {F} \) = Average Impact Force \(lbf-ft\) \(J\)
\( \Delta p \) = Change in Momentum \(lbm-ft\;/\;sec\)  \(kg-m\;/\;s\) 
\( \Delta t \) = Time Duration of Impact \(sec\) \(s\)

Average impact force, abbreviated as \( \bar F \) or \(F_{avg}\), is the average force exerted on an object (or by an object) during the extremely short time interval of a collision or impact, such as when a baseball bat strikes a ball, a car crashes into a wall, or a hammer hits a nail.  Unlike instantaneous force, which can vary dramatically throughout the brief duration of the impact (often reaching very high peak values), the average impact force is a single equivalent constant force that, if applied over the same duration of the collision, would produce the same change in momentum as the actual varying force did. 

Piping Designer Logo 1

Average Impact Force Formula

\( \bar {F} \;=\;  \dfrac{  KE  }{  d }  \)     (Average Impact Force)

\(  KE  \;=\;  \bar F  \cdot  d \)

\( d  \;=\;  \dfrac{ KE  }{ \bar F  } \)

Symbol English Metric
\( \bar {F} \) = Average Impact Force \(lbf-ft\) \(J\)
\( KE \) = Kinetic Energy Just Before Impact \( lbf-ft \) \(J\)
\( d \) = Distance over which  the Impact Occures \(ft\) \(m\)

 

 

 

 

 

 

 

Average Impact Force Formula

\( \bar {F} \;=\;  \dfrac{ m \cdot  v^2  }{ 2 \cdot d }  \)     (Average Impact Force)

\( m \;=\;  \dfrac{  2 \cdot d \cdot  \bar {F}  }{  v^2  }  \)

\(  v  \;=\;   \sqrt{  \dfrac{  2 \cdot  d \cdot \bar {F}  }{  m  }  } \)

\( d  \;=\;  \dfrac{ m \cdot  v^2 }{ 2  \cdot  \bar {F}  } \)

Symbol English Metric
\( \bar {F} \) = Average Impact Force \(lbf-ft\) \(J\)
\( m \) = Object Mass \(lbm\) \(kg\)
\( v \) = Velocity Just Before Impact \(ft\;/\;sec\) \(m\;/\;s\)
\( d \) = Distance over which  the Impact Occures \(ft\) \(m\)