Angular Velocity

Written by Jerry Ratzlaff on . Posted in Classical Mechanics

velocity angularAngular velocity, abbreviated as \(\omega\) (Greek symbol omega), also called angular speed, is the speed that an object moves through an angle, θ.  The calculation below calculates ω but does not calculate the relative velocity of a point as it moves throughout the curve.

 

Angular Velocity Formula

\(\large{ \omega = \frac { \Delta \theta } { \Delta t  }   }\) 

\(\large{ \omega = \frac { \theta_f \;-\; \theta_i } { \Delta t  }   }\) 

\(\large{ \omega = \frac { 2 \; \pi } { \Delta t }   }\) 

Symbol English Metric
\(\large{ \omega }\)   (Greek symbol omega) = angular velocity \(\large{\frac{deg}{sec}}\) \(\large{\frac{rad}{s}}\)
\(\large{ \Delta \theta  }\)   (Greek symbol theta) = angular displacement \(\large{deg}\) \(\large{rad}\)
\(\large{ s }\) = displacement covered by object \(\large{ft}\)  \(\large{m}\) 
\(\large{ \theta_f  }\) = final angle \(\large{deg}\) \(\large{rad}\)
\(\large{ \theta_i  }\) = initial angle \(\large{deg}\) \(\large{rad}\)
\(\large{ \pi }\) = Pi \(\large{3.141 592 653 ...}\)
\(\large{ r }\) = radius \(\large{ft}\) \(\large{m}\)
\(\large{ \Delta t  }\) = time change \(\large{sec}\) \(\large{s}\)

 

Angular Velocity Calculator

 

Piping Designer Logo Slide 1

Tags: Velocity Equations Calculators