Skip to main content

Moment of Inertia of a Sphere

 

Moment of Inertia of a Sphere Formula, Solid Sphere

\( I \;=\; \dfrac{2}{5} \cdot m \cdot r^2  \) 
Symbol English Metric
\(\large{ I }\) = Moment of Inertia \(lbm\;/\;ft^2-sec\) \(kg\;/\;m^2\)
\(\large{ m }\) = Mass \( lbm \) \( kg \)
\(\large{ r }\) = Radius \( in \) \( mm \)

moment of inertia Sphere solid 1This calculation is for the moment of inertia of a sphere.  There are three separate calculations:  a solid sphere, a hollow sphere and a hollow core sphere.  The difference between a hollow sphere and a hollow core sphere is a hollow sphere has a thin shell, or a thickness that is neglible.  Because a sphere is the same dimensions in every dimension, the moment of inertia is the same about every axis.

Moment of Inertia of a Sphere Formula, Hollow Sphere

\( I \;=\; \dfrac {2}{3} \cdot m \cdot r^2 \) 
Symbol English Metric
\(\large{ I }\) = Moment of Inertia \(lbm\;/\;ft^2-sec\) \(kg\;/\;m^2\)
\(\large{ m }\) = Mass \( lbm \) \( kg \)
\(\large{ r }\) = Radius \( in \) \( mm \)

moment of inertia Sphere solid 1  Piping Designer Logo 1 

 

 

 

 

 

 

Moment of Inertia of a Sphere Formula, Hollow Core Sphere

\( I \;=\; \dfrac{2}{5} \cdot m \cdot r^2 \cdot \dfrac{ r_2^5 - r_1^5 }{ r_2^3 - r_1^3 } \) 
Symbol English Metric
\(\large{ I }\) = Moment of Inertia \(lbm\;/\;ft^2-sec\) \(kg\;/\;m^2\)
\(\large{ m }\) = Mass \( lbm \) \( kg \)
\(\large{ r }\) = Radius \( in \) \( mm \)
\(\large{ r_1 }\) = Radius \( in \) \( mm \)
\(\large{ r_2 }\) = Radius \( in \) \( mm \)

moment of inertia Sphere hollow 1