Average Velocity Change in Velocity
Average Velocity Change in Velocity Formulas |
||
|
\( \bar {v} \;=\; \dfrac{ v_t }{ t_t }\) \( \bar {v} \;=\; \dfrac{ v_1 + v_2 + v_3 ... v_n }{ t_1 + t_2 + t_3 ... t_n }\) |
||
| Symbol | English | Metric |
| \( \bar {v} \) = Average Velocity | \(ft \;/\;sec\) | \(m \;/\; s\) |
| \( t \) = Time | \( sec \) | \( s \) |
| \( t_t \) = Total Time | \( sec \) | \( s \) |
| \( v_t \) = Total Velocity | \(ft \;/\;sec\) | \(m \;/\; s\) |
| \( v \) = Velocity | \(ft \;/\;sec\) | \(m \;/\; s\) |
When an object make changes in its velocity at different times that is an average velocity of any given velocities.

