Final Temperature
Final Temperature Formula |
||
|
\( T_f \;=\; T_i + \Delta T \) (Final Temperature) \( T_i \;=\; T_f - \Delta T \) \( \Delta T \;=\; T_f - T_i \) |
||
| Symbol | English | Metric |
| \( T_f \) = Final Temperature | \(^\circ F\) | \(^\circ C\) |
| \( T_i \) = Initial Temperature | \(^\circ F\) | \(^\circ C\) |
| \( \Delta T \) = Change in Temperature | \(^\circ F\) | \(^\circ C\) |

Final Temperature Formula |
||
|
\( T_f \;=\; T_i + \dfrac{ Q }{ c \cdot m} \) (Final Temperature) \( T_i \;=\; T_f - \dfrac{ Q }{ c \cdot m} \) \( Q \;=\; ( T_f - T_i ) \cdot c \cdot m \) \( c \;=\; \dfrac{ Q }{ m \cdot ( T_f - T_i ) }\) \( m \;=\; \dfrac{ Q }{ c \cdot ( T_f - T_i ) }\) |
||
| Symbol | English | Metric |
| \( T_f \) = Final Temperature | \(^\circ F\) | \(^\circ C\) |
| \( T_i \) = Initial Temperature | \(^\circ F\) | \(^\circ C\) |
| \( Q \) = Specific Heat Capacity | \(Btu \;/\; lbm-F\) | \(kJ \;/\;kg-K\) |
| \( c \) = Specific Heat | \(Btu \;/\; lbm-F\) | \(kJ \;/\;kg-K\) |
| \( m \) = Object Mass | \(lbm\) | \(kg\) |
Final temperature, abbreviated as \(T_f\) or \(T_{final}\), is the temperature of a substance, object, or system after a process, event, or change has taken place. It represents the temperature measured at the end of heating, cooling, mixing, reacting, or any other thermal activity. The final temperature is important because it helps determine how much the temperature has changed, how much heat was gained or lost, and how a material or system responded to the conditions it experienced. By comparing the final temperature with the initial temperature, scientists and engineers can analyze energy transfer, evaluate system performance, and understand thermal behavior in a wide range of physical situations.

Final Temperature Formula |
||
|
\( T_f \;=\; T_i + \dfrac{ \Delta L }{ \overrightarrow{\alpha_l} \cdot L_o } \) (Final Temperature) \( T_i \;=\; T_f - \dfrac{ \Delta L }{ \overrightarrow{\alpha_l} \cdot L_o } \) \( \Delta L \;=\; ( T_f - T_i ) \cdot \overrightarrow{\alpha_l} \cdot L_o \) \( \overrightarrow{\alpha_l} \;=\; \dfrac{ \Delta L }{ L_o \cdot ( T_f - T_i ) } \) \( L_o \;=\; \dfrac{ \Delta L }{ \overrightarrow{\alpha_l} \cdot ( T_f - T_i ) } \) |
||
| Symbol | English | Metric |
| \( T_f \) = Final Temperature | \(^\circ F\) | \(^\circ C\) |
| \( T_i \) = Initial Temperature | \(^\circ F\) | \(^\circ C\) |
| \( \Delta L \) = Change in Length | \(ft\) | \(m\) |
| \( \overrightarrow{\alpha_l} \) (Greek symbol alpha) = Linear Thermal Expansion Coefficient | \(in \;/\; in\;F\) | \(mm \;/\; mm\;C\) |
| \( L_o \) = Origional Length | \(ft\) | \(m\) |
Final Temperature Formula |
||
|
\( T_f \;=\; T_i + \dfrac{ \Delta V }{ \beta_v \cdot V_o } \) (Final Temperature) \( T_i \;=\; T_f - \dfrac{ \Delta V }{ \beta_v \cdot V_o } \) \( \Delta V \;=\; ( T_f - T_i ) \cdot \beta_v \cdot V_o \) \( \beta_v \;=\; \dfrac{ \Delta V }{ V_o \cdot ( T_f - T_i ) } \) \( V_o \;=\; \dfrac{ \Delta V }{ \beta_v \cdot ( T_f - T_i ) } \) |
||
| Symbol | English | Metric |
| \( T_f \) = Final Temperature | \(^\circ F\) | \(^\circ C\) |
| \( T_i \) = Initial Temperature | \(^\circ F\) | \(^\circ C\) |
| \( \Delta V \) = Change in Volume | \(ft^3\) | \(m^3\) |
| \( \beta_v \) = Volumetric Thermal Expansion Coefficient | \(in^3 \;/\; in^3\;F\) | \(mm^3 \;/\; mm^3\;C\) |
| \( V_o \) = Origional Volume | \(ft^3\) | \(m^3\) |
