Stefan-Boltzmann Constant
Stefan-Boltzmann constant, abbreviated as \( \sigma\) (Greek symbol sigma), is the total intensity ratiated over all wavelength increases as the temperature increases.
Stefan-Boltzmann Constant formula |
||
\(\large{ \sigma = \frac{ 2\; \pi^5 \; k_b^4 }{ 15 \; h^3 \; c^2 } }\) | ||
Symbol | English | Metric |
\(\large{ \sigma }\) (Greek symbol sigma) = Stefan-Boltzmann constant | \(\large{\frac{Btu}{ft^2\;hr\; R^4}}\) | \(\large{ \frac{W}{m^2-K^4} }\) |
\(\large{ k_b }\) = Boltzmann constant | \(\large{ \frac{lbm-ft^2}{sec^2} }\) | \(\large{ \frac{kJ}{molecule-K} }\) |
\(\large{ \pi }\) = Pi | \(\large{3.141 592 653 ...}\) | |
\(\large{ h }\) = Planck constant | \(\large{ \frac{lbf-ft}{sec} }\) | \(\large{ J-s }\) |
\(\large{ c }\) = speed of light in vacuum | \(\large{ \frac{ft}{sec} }\) | \(\large{ \frac{m}{s} }\) |
Stefan-Boltzmann Constant |
||
\(\large{ \sigma = 1.713441 \;x\; 10^{-9} \frac{Btu}{ft^2 \; hr \; R^4}}\) \(\large{ \sigma = 5.670374419 \;x\;10^{-8} \;\frac{W}{m^2 \; K^4} }\) |