Linear Thermal Expansion
Linear thermal expansion, abbreviated as \(\Delta l\), also known as line thermal expansion, is a porportional change in the origional length and change in temperature due to the heating or cooling of an object.
Linear thermal expansion Formula |
||
\(\large{ \overrightarrow{\Delta l} = l_f - l_i }\) | ||
Symbol | English | Metric |
\(\large{ \overrightarrow{\Delta l} }\) = linear thermal expansion | \(\large{ \frac{in}{in\;F} }\) | \(\large{ \frac{mm}{mm\;C} }\) |
\(\large{ l_f }\) = final length | \(\large{ft}\) | \(\large{m}\) |
\(\large{ l_i }\) = initial length | \(\large{ft}\) | \(\large{m}\) |
Linear thermal expansion Formula |
||
\(\large{ \overrightarrow{\Delta l} = \overrightarrow{\alpha_l}\; l_i \; \Delta T }\) | ||
Symbol | English | Metric |
\(\large{ \overrightarrow{\Delta l} }\) = linear thermal expansion | \(\large{ \frac{in}{in\;F} }\) | \(\large{ \frac{mm}{mm\;C} }\) |
\(\large{ l_i }\) = initial length | \(\large{ft}\) | \(\large{m}\) |
\(\large{ \overrightarrow{\alpha_l} }\) (Greek symbol alpha) = linear thermal expansion coefficient | \(\large{ \frac{in}{in\;F} }\) | \(\large{ \frac{mm}{mm\;C} }\) |
\(\large{ \Delta T }\) = temperature change | \(\large{F}\) | \(\large{C}\) |
Tags: Thermal Equations Length Equations Expansion Equations