Oblique Triangle (Acute and Obtuse)

Oblique triangle (a two-dimensional figure) is tilted at an angle, not horizontal or vertical.- Acute oblique triangle (a two-dimensional figure) has all three angles less than 90°.
- Circumcircle is a circle that passes through all the vertices of a two-dimensional figure.
- Inscribed circle is the largest circle possible that can fit on the inside of a two-dimensional figure.
- Obtuse oblique triangle (a two-dimensional figure) has one of the three angles more than 90°.
- Semiperimeter is one half of the perimeter.
- x + y + z = 180°
- 3 edges
- 3 vertexs
- Height: \(h_a\), \(h_b\), \(h_c\)
- Median: \(m_a\), \(m_b\), \(m_c\) - A line segment from a vertex (corner point) to the midpoint of the opposite side
- Angle bisectors: \(t_a\), \(t_b\), \(t_c\) - A line that splits an angle into two equal angles






area of an Oblique triangle formulas |
||
|
\( A_{area} \;=\; \dfrac{ h \cdot b}{2} \) \( A_{area} \;=\; a \cdot b \cdot \dfrac{ \sin( y) }{ 2 } \) |
||
| Symbol | English | Metric |
| \( A_{area} \) = area | \(\large{ in^2 }\) | \(\large{ mm^2 }\) |
| \( a, b, c \) = edge | \(\large{ in }\) | \(\large{ mm }\) |
Circumcircle of an Oblique triangle formulas |
||
|
\( R \;=\; \sqrt { \dfrac{ a^2 \cdot b^2 \cdot c^2 }{ \left( a + b + l \cdot c \right) \cdot \left( - a + b + c \right) \cdot \left( a - b + c \right) \cdot \left( a + b - c \right) } } \) \( R \;=\; \dfrac{ a \cdot b \cdot c }{ 4 \cdot \sqrt { s \cdot \left( s - a \right) \cdot \left( s - b \right) \cdot \left( s - c \right) } } \) |
||
| Symbol | English | Metric |
| \(\large{ R }\) = outcircle | \(\large{ in }\) | \(\large{ mm }\) |
| \(\large{ a, b, c }\) = edge | \(\large{ in }\) | \(\large{ mm }\) |
| \(\large{ s }\) = semiperimeter | \(\large{ in }\) | \(\large{ mm }\) |
height of an Oblique triangle formula |
||
| \( h \;=\; 2 \cdot \dfrac{A_{area} }{ b } \) | ||
| Symbol | English | Metric |
| \(\large{ h }\) = height | \(\large{ in }\) | \(\large{ mm }\) |
| \(\large{ A_{area} }\) = area | \(\large{ in^2 }\) | \(\large{ mm^2 }\) |
| \(\large{ a, b, c }\) = edge | \(\large{ in }\) | \(\large{ mm }\) |
inscribed circle of an Oblique triangle formula |
||
| \( r \;=\; \sqrt{ \dfrac{ \left( s - a \right) \cdot \left( s - b \right) \cdot \left( s - c \right) }{ s } } \) | ||
| Symbol | English | Metric |
| \( r \) = incircle | \(\large{ in }\) | \(\large{ mm }\) |
| \( a, b, c \) = edge | \(\large{ in }\) | \(\large{ mm }\) |
perimeter of an Oblique triangle formula |
||
| \(P \;=\; a + b + c \) | ||
| Symbol | English | Metric |
| \( P \) = perimeter | \(\large{ in }\) | \(\large{ mm }\) |
| \( a, b, c \) = edge | \(\large{ in }\) | \(\large{ mm }\) |
semiperimeter of an Oblique triangle formula |
||
| \( s \;=\; \dfrac{ a + b + c }{ 2 } \) | ||
| Symbol | English | Metric |
| \(\large{ s }\) = semiperimeter | \(\large{ in }\) | \(\large{ mm }\) |
| \(\large{ a, b, c }\) = edge | \(\large{ in }\) | \(\large{ mm }\) |
Side of an Oblique triangle formulas |
||
|
\( a \;=\; P - b - c \) \( a \;=\; 2\cdot \dfrac{ A_{area} }{ b\cdot \sin( y) } \) \( b \;=\; P - a - c \) \( b \;=\; 2\cdot \dfrac{ A_{area} }{ h } \) \( c \;=\; P - a - b \) |
||
| Symbol | English | Metric |
| \(\large{ a, b, c }\) = edge | \(\large{ in }\) | \(\large{ mm }\) |
| \(\large{ A_{area} }\) = area | \(\large{ in^2 }\) | \(\large{ mm^2 }\) |
| \(\large{ P }\) = perimeter | \(\large{ in }\) | \(\large{ mm }\) |
Trig Functions |
||
Find p
|
||
Find s
|
||
Find d
|
||
Find e
|
||
Find h
|
||
Find Area
|
||
Find A
|
||
Find B
|
||
Find C
|
||
Find a
|
||
Find b
|
||
Find c
|



