Nomenclature & Symbols for Engineering, Mathematics, and Science

nomenclature symbol banner 4Formula nomenclature is a system of names or terms represented by letters and the Greek alphabet assigned to represent equation physical quantities.  Definition symbols vary widely and do not necessarily represent the information being presented the way an abbreviation does.  These alphabetical lists contain symbols, greek symbols, definitions, US units, metric units, dimensionless numbers, constants, and constant values.

 

Nomenclature & Symbols for Engineering, Mathematics, and Science

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

 

Nomenclature & Symbols for Accounting, Business, and Finance

 

Site Lists

List of all Site Categories, List of all Tags, List of all Site Glossaries

 

Nomenclature and Symbols Glossary

Algebra Symbols, Angle and Line Symbols, ASCII Characters, Basic Math Symbols, Bracket Symbols, Equivalence Symbols, Geometry Symbols, Greek Alphabet, HTML Colors, Miscellaneous Symbols, Roman Numerals, Set Symbols, Square Root Symbols

 

Unit Equalities

Unit  -  Symbol English Metric SI
 Ampere  -  \(A\), \(\;I\)
 \(I\)  \(I\)  =  \(\large{\frac{C}{s}}\)  \(C - s^{-1}\)
 Btu  -  \(Btu\)  \(Btu\)  =  \(lbf-ft\)  \(Btu\)  =  \(J\)  =  \(kJ\)  =  \(W-h\)  \(J\)
 Celsius  -  \(C\)  -   \(C\)   \(x+273.15\;K\)
 Coulomb  -  \(C\)  -  \(C\)  =  \(A-s\)   \(A-s\)
 Farad  -  \(F\)  -  \(F\)  =  \(\large{\frac{s^4-A^2}{kg-m^2}}\)  =  \(\large{\frac{S^2-C^2}{kg-m^2}}\)  =  \(\large{\frac{C}{V}}\)  =  \(\large{\frac{A-s}{V}}\)  =  \(\large{\frac{W-s}{V^2}}\)  =  \(\large{\frac{J}{V^2}}\)  =  \(\large{\frac{N-m}{V^2}}\)  =  \(\large{\frac{C^2}{J}}\)  =  \(\large{\frac{C^2}{N-m}}\)  =  \(\large{\frac{S}{\Omega}}\)  =  \(\large{\frac{1}{\Omega-Hz}}\)  =  \(\large{\frac{S}{Hz}}\)  =  \(\large{\frac{s^2}{H}}\)  \(s^4-A^2-kg^{-1}-m^{-2}\)
 Gauss -  \(G\)  -  \(G\)  =  \(\large{\frac{T}{10^4}}\)  =  \(Mx-cm^2\)  =  \(\large{\frac{g}{Bi-s^2}}\)  \(T-10^{-4}\)
 Henry -  \(H\)  -  \(H\)  =  \(\large{\frac{kg-m^2}{s^2-A^2}}\)  =  \(\large{\frac{N-m}{A^2}}\)  =  \(\large{\frac{kg-m^2}{C^2}}\)  =  \(\large{\frac{J}{A^2}}\)  =  \(\large{\frac{T-m^2}{A}}\)  =  \(\large{\frac{Wb}{A}}\)  =  \(\large{\frac{V-s}{A}}\)  =  \(\large{\frac{s^2}{F}}\)  =  \(\large{\frac{\Omega}{Hz}}\)  =  \(\Omega-s\)  \(kg-m^2-s^{-2}-A^{-2}\)
 Hertz -  \(Hz\)  -  \(Hz\)  =  \(s^{-1}\) (one cycle per sec)  \(s^{-1}\)
 Horespower -  \(hp\)  \(hp\)  \(hp\)  =  \(W\)  \(W\)
 Joule -  \(J\)  \(lbf-ft\)  \(J\)  =  \(\large{\frac{kg-m^2}{s^2}}\)  =  \(N-m\)  =  \(Pa-m^3\)  =  \(W-s\)  =  \(C-V\)  =  \(\Omega-A^2-s\)  \(kg-m^2-s^{-2}\)
 Joule-sec -  \(J-s\)  \(\large{\frac{lbf-ft}{sec}}\)  \(J-s\)  =  \(\large{\frac{kg-m^2}{s}}\)  \(kg-m^2-s^{-1}\)
 Kelvin -  \(K\)  -  \(K\)  \(x-273.15\;C\)
 Maxwell -  \(Mx\)  -  \(Mx\)  =  \(\large{\frac{Wb}{10^{8}}}\)  =  \(\large{\frac{G}{cm^2}}\)  \(Wb-10^{-8}\)
 Newton -  \(N\)  \(lbf\)  \(N\)  =  \(\large{\frac{kg-m}{s^2}}\)  \(kg-m-s^{-2}\)
 Newton-meter -  \(N-m\)  \(lbf-ft\)  \(N-m\)  =  \(\large{\frac{kg-m^2}{s^2}}\)  \(kg-m^2-s^{-2}\)
 Ohm -  \((\Omega)\), \(\;(R)\)  \(\Omega\)  \(\Omega\)  =  \(\large{\frac{kg-m^2}{s^3-A^2}}\)  =  \(\large{\frac{kg-m^2}{s-C^2}}\)  =  \(\large{\frac{J}{s-A^2}}\)  =  \(\large{\frac{V}{A}}\)  =  \(\large{\frac{1}{S}}\)  =  \(\large{\frac{W}{A^2}}\)  =  \(\large{\frac{V^2}{W}}\)  =  \(\large{\frac{s}{F}}\)  =  \(\large{\frac{H}{s}}\)  =  \(\large{\frac{J-s}{C^2}}\) \(kg-m^2-s^{-3}-A^{-2}\)
 Poise -  \(P\)   \(\large{\frac{lbf}{ft-sec}}\)  \(P\)  =  \(\large{\frac{kg}{0.1\;m-s}}\)  =  \(1\;dyn-s-cm^2\)  =  \(\large{\frac{N-s}{m^2}}\)  \(kg-0.1\;m^{-1}-s^{-1}\)
 Pascal -  \(Pa\)   \(\large{\frac{lbf}{in^2}}\)  \(Pa\)  =  \(\large{\frac{kg}{m-s^2}}\)  =  \(\large{\frac{N}{m^2}}\)  =  \(\large{\frac{J}{m^3}}\)  \(kg-m^{-1}-s^{-2}\)
 Pascal-sec -  \(Pa-s\)   \(\large{\frac{lbf-sec}{ft^2}}\)  \(Pa-s\)  =  \(\large{\frac{kg}{m-s}}\)  =  \(\large{\frac{N-s}{m^2}}\)  =  \(10\;P\)  \(kg-m^{-1}-s^{-1}\)
 MegaPascal -  \(MPa\)   \(\large{\frac{lbf}{in^2}}\)  \(MPa\)  =  \(\large{\frac{N}{mm^2}}\)  \(N-mm^{-2}\)
 Siemens -  \(S\)  -  \(S\)  =  \(\large{\frac{s^3-A^2}{kg-m^2}}\) \(s^3-A^2-kg^{-1}-m^{-2}\)
 Tesla -  \(T\)  -  \(T\)  =  \(\large{\frac{kg}{s^2-A}}\)  =  \(\large{\frac{V-s}{m^2}}\)  =  \(\large{\frac{N}{A-m}}\)  =  \(\large{\frac{J}{A-m^2}}\)  =  \(\large{\frac{H-A}{m^2}}\)  =  \(\large{\frac{Wb}{m^2}}\)  =  \(\large{\frac{kg}{C-s}}\)  =  \(\large{\frac{N-s}{C-m}}\)  =  \(\large{\frac{kg}{A-s^2}}\)  \(kg-s^{-2}-A^{-1}\)
 Torr -  \(Torr\)  -  \(Torr\)  =  \(Pa\)  \(kg-m^{-1}-s^{-2}\)
 Volt -  \(V\)  \(V\)

 \(V\)  =  \(\large{\frac{kg-m^2}{s^{3}-A}}\)  =  \(A-\Omega\)  =  \(\large{\frac{Wb}{s}}\)  =  \(\large{\frac{W}{A}}\)  =  \(\large{\frac{J}{C}}\)  =  \(\large{\frac{eV}{e}}\)

  • eV = electronvolt
  • e = elementary charge
 \(kg-m^2-s^{-3}-A^{-1}\)
 Watt -  \((W)\), \(\;(P)\)  \(\large{\frac{lbf-ft^2}{ssec^3}}\)  \(W\)  =  \(\large{\frac{kg-m^2}{s^3}}\)  =  \(\large{\frac{J}{s}}\)  =  \(\large{\frac{N-m}{s}}\)  \(kg-m^2-s^{-3}\)
 Weber -  \(Wb\)  \(\large{\frac{V}{sec}}\)  \(Wb\)  =  \(\large{\frac{kg-m^2}{s^2-A}}\)  =  \(\large{\frac{N-m}{A}}\)  =  \(\large{\frac{J}{A}}\)  =  \(\Omega-C\)  =  \(V-s\)  =  \(H-S\)  =  \(T-m^2\)  =  \(10^8-Mx\)  \(kg-m^2-s^{-2}-A^{-1}\)
Unit  -  Symbol  English Metric  SI

 

P D Logo 1

Display #
Title
Algebra Symbols
Angle and Line Symbols
ASCII Characters
Basic Math Symbols
Bracket Symbols