# Orifice Area

on . Posted in Flow Instrument

Orifice area refers to the area cross-section of an orifice, which is a small opening or hole through which fluid flows.  The orifice area is an important parameter in fluid dynamics and flow calculations, particularly in applications such as pipes, nozzles, and valves.

• Geometric Orifice Area (GOA)  -  The orifice opening
• Effective Orifice Area (EOA)  -  The minimal cross-section area of the downstream jet.
• Contraction Coefficient ($$C_c$$)  -  The ratio of the area measured at the vena contracta (EOA), to the area of the orifice (GOA) or $$C_c = \frac{EOA}{GOA}$$
• Discharge Coefficient ($$C_d$$)  -  The ratio of actual flow to ideal flow or $$C_d = \frac{Q_a}{Q_i}$$

## Orifice Area formula

$$\large{ A_0 = \frac{ Q }{ C_d \; \sqrt{ 2 \; G \; h } } }$$     (Orifice Area)

$$\large{ Q = A_o \; C_d \; \sqrt{ 2 \; G \; h } }$$

$$\large{ C_d = \frac{ Q }{ A_o \; \sqrt{ 2 \; G \; h } } }$$

$$\large{ G = \frac{ \left( \frac{ Q }{ C_d \; A_o } \right)^2 }{ 2 \; h } }$$

$$\large{ h = \frac{ \left( \frac{ Q }{ A_o \; C_d } \right)^2 }{ 2 \; G } }$$

### Solve for Ao

 orifice flow rate, Q orifice discharge coefficient, Cd orifice gravitational constant, G orifice center of head, h

### Solve for Q

 orifice area, Ao orifice discharge coefficient, Cd orifice gravitational constant, G orifice center of head, h

### Solve for Cd

 orifice flow rate, Q orifice area, Ao orifice gravitational constant, G orifice center of head,h

### Solve for G

 orifice flow rate, Q orifice area, Ao orifice discharge coefficient, Cd orifice center of head, h

### Solve for h

 orifice flow rate, Q orifice area, Ao orifice discharge coefficient, Cd orifice gravitational constant, G

Symbol English Metric
$$\large{ A_o }$$ = orifice area  $$\large{ in^2 }$$ $$\large{ mm^2 }$$
$$\large{ Q }$$ = orifice flow rate $$\large{\frac{ft^3}{sec}}$$ $$\large{\frac{m^3}{s}}$$
$$\large{ C_d }$$ = orifice discharge coefficient $$\large{ dimensionless }$$
$$\large{ G }$$ = orifice gravitational constant $$\large{\frac{lbf-ft^2}{lbm^2}}$$  $$\large{\frac{N - m^2}{kg^2}}$$
$$\large{ h }$$ = orifice center of head $$\large{ in }$$ $$\large{ mm }$$