Nomenclature & Symbols for Engineering, Mathematics, and Science
Formula nomenclature is a system of names or terms represented by letters and the Greek alphabet assigned to represent equation physical quantities. Definition symbols vary widely and do not necessarily represent the information being presented the way an abbreviation does. These alphabetical lists contain symbols, greek symbols, definitions, US units, metric units, dimensionless numbers, constants, and constant values.
- List of Tags - Engineering, Nomenclature and Symbols, Physics, Mathematics, Science, Glossary
- See Articles - List of Categories, List of Articles
Mathematics and Management Rules and Symbols
- Mathematics Symbols and Misc. - Algebra Symbols / Angle and Line Symbols / ASCII Characters / Basic Math Symbols / Bracket Symbols / Derivatives and Differentials / Equivalence Symbols / Geometry Postulates / Geometry Symbols / Geometry Theorems / Greek Alphabet / HTML Colors / Manipulating Equations / Miscellaneous Symbols / Roman Numerals / Set Symbols / Square Root Symbols
- Nomenclature & Symbols for Accounting, Business, and Finance
- Nomenclature & Symbols for Engineering, Mathematics, and Science
Nomenclature & Symbols for Engineering, Mathematics, and Science
- A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z
Unit Equalities |
|||
Symbol | English | Metric | SI |
Ampere - \(A\), \(\;I\) |
- | \(I\) = \(\large{\frac{C}{s}}\) | \(C - s^{-1}\) |
Btu - \(Btu\) | \(Btu\) = \(lbf-ft\) | \(Btu\) = \(J\) = \(kJ\) = \(W-h\) | \(J\) |
Celsius - \(C\) | - | \(C\) | \(x+273.15\;K\) |
Coulomb - \(C\) | - | \(C\) = \(A-s\) | \(A-s\) |
Farad - \(F\) | - | \(F\) = \(\large{\frac{s^4-A^2}{kg-m^2}}\) = \(\large{\frac{S^2-C^2}{kg-m^2}}\) = \(\large{\frac{C}{V}}\) = \(\large{\frac{A-s}{V}}\) = \(\large{\frac{W-s}{V^2}}\) = \(\large{\frac{J}{V^2}}\) = \(\large{\frac{N-m}{V^2}}\) = \(\large{\frac{C^2}{J}}\) = \(\large{\frac{C^2}{N-m}}\) = \(\large{\frac{S}{\Omega}}\) = \(\large{\frac{1}{\Omega-Hz}}\) = \(\large{\frac{S}{Hz}}\) = \(\large{\frac{s^2}{H}}\) | \(s^4-A^2-kg^{-1}-m^{-2}\) |
Gauss - \(G\) | - | \(G\) = \(\large{\frac{T}{10^4}}\) = \(Mx-cm^2\) = \(\large{\frac{g}{Bi-s^2}}\) | \(T-10^{-4}\) |
Henry - \(H\) | - | \(H\) = \(\large{\frac{kg-m^2}{s^2-A^2}}\) = \(\large{\frac{N-m}{A^2}}\) = \(\large{\frac{kg-m^2}{C^2}}\) = \(\large{\frac{J}{A^2}}\) = \(\large{\frac{T-m^2}{A}}\) = \(\large{\frac{Wb}{A}}\) = \(\large{\frac{V-s}{A}}\) = \(\large{\frac{s^2}{F}}\) = \(\large{\frac{\Omega}{Hz}}\) = \(\Omega-s\) | \(kg-m^2-s^{-2}-A^{-2}\) |
Hertz - \(Hz\) | - | \(Hz\) = \(s^{-1}\) (one cycle per sec) | \(s^{-1}\) |
Horespower - \(hp\) | \(hp\) | \(hp\) = \(W\) | \(W\) |
Joule - \(J\) | \(lbf-ft\) | \(J\) = \(\large{\frac{kg-m^2}{s^2}}\) = \(N-m\) = \(Pa-m^3\) = \(W-s\) = \(C-V\) = \(\Omega-A^2-s\) | \(kg-m^2-s^{-2}\) |
Joule-sec - \(J-s\) | \(\large{\frac{lbf-ft}{sec}}\) | \(J-s\) = \(\large{\frac{kg-m^2}{s}}\) | \(kg-m^2-s^{-1}\) |
Kelvin - \(K\) | - | \(K\) | \(x-273.15\;C\) |
Maxwell - \(Mx\) | - | \(Mx\) = \(\large{\frac{Wb}{10^{8}}}\) = \(\large{\frac{G}{cm^2}}\) | \(Wb-10^{-8}\) |
Newton - \(N\) | \(lbf\) | \(N\) = \(\large{\frac{kg-m}{s^2}}\) | \(kg-m-s^{-2}\) |
Newton-meter - \(N-m\) | \(lbf-ft\) | \(N-m\) = \(\large{\frac{kg-m^2}{s^2}}\) | \(kg-m^2-s^{-2}\) |
Ohm - \((\Omega)\), \(\;(R)\) | - | \(\Omega\) = \(\large{\frac{kg-m^2}{s^3-A^2}}\) = \(\large{\frac{kg-m^2}{s-C^2}}\) = \(\large{\frac{J}{s-A^2}}\) = \(\large{\frac{V}{A}}\) = \(\large{\frac{1}{S}}\) = \(\large{\frac{W}{A^2}}\) = \(\large{\frac{V^2}{W}}\) = \(\large{\frac{s}{F}}\) = \(\large{\frac{H}{s}}\) = \(\large{\frac{J-s}{C^2}}\) | \(kg-m^2-s^{-3}-A^{-2}\) |
Poise - \(P\) | \(\large{\frac{lbf}{ft-sec}}\) | \(P\) = \(\large{\frac{kg}{0.1\;m-s}}\) = \(1\;dyn-s-cm^2\) = \(\large{\frac{N-s}{m^2}}\) | \(kg-0.1\;m^{-1}-s^{-1}\) |
Pascal - \(Pa\) | \(\large{\frac{lbf}{in^2}}\) | \(Pa\) = \(\large{\frac{kg}{m-s^2}}\) = \(\large{\frac{N}{m^2}}\) = \(\large{\frac{J}{m^3}}\) | \(kg-m^{-1}-s^{-2}\) |
Pascal-sec - \(Pa-s\) | \(\large{\frac{lbf-sec}{ft^2}}\) | \(Pa-s\) = \(\large{\frac{kg}{m-s}}\) = \(\large{\frac{N-s}{m^2}}\) = \(10\;P\) | \(kg-m^{-1}-s^{-1}\) |
MegaPascal - \(MPa\) | \(\large{\frac{lbf}{in^2}}\) | \(MPa\) = \(\large{\frac{N}{mm^2}}\) | \(N-mm^{-2}\) |
Siemens - \(S\) | - | \(S\) = \(\large{\frac{s^3-A^2}{kg-m^2}}\) | \(s^3-A^2-kg^{-1}-m^{-2}\) |
Tesla - \(T\) | - | \(T\) = \(\large{\frac{kg}{s^2-A}}\) = \(\large{\frac{V-s}{m^2}}\) = \(\large{\frac{N}{A-m}}\) = \(\large{\frac{J}{A-m^2}}\) = \(\large{\frac{H-A}{m^2}}\) = \(\large{\frac{Wb}{m^2}}\) = \(\large{\frac{kg}{C-s}}\) = \(\large{\frac{N-s}{C-m}}\) = \(\large{\frac{kg}{A-s^2}}\) | \(kg-s^{-2}-A^{-1}\) |
Torr - \(Torr\) | - | \(Torr\) = \(Pa\) | \(kg-m^{-1}-s^{-2}\) |
Volt - \(V\) | - |
\(V\) = \(\large{\frac{kg-m^2}{s^{3}-A}}\) = \(A-\Omega\) = \(\large{\frac{Wb}{s}}\) = \(\large{\frac{W}{A}}\) = \(\large{\frac{J}{C}}\) = \(\large{\frac{eV}{e}}\)
|
\(kg-m^2-s^{-3}-A^{-1}\) |
Watt - \((W)\), \(\;(P)\) | \(\large{\frac{lbf-ft^2}{ssec^3}}\) | \(W\) = \(\large{\frac{kg-m^2}{s^3}}\) = \(\large{\frac{J}{s}}\) = \(\large{\frac{N-m}{s}}\) | \(kg-m^2-s^{-3}\) |
Weber - \(Wb\) | \(\large{\frac{V}{sec}}\) | \(Wb\) = \(\large{\frac{kg-m^2}{s^2-A}}\) = \(\large{\frac{N-m}{A}}\) = \(\large{\frac{J}{A}}\) = \(\Omega-C\) = \(V-s\) = \(H-S\) = \(T-m^2\) = \(10^8-Mx\) | \(kg-m^2-s^{-2}-A^{-1}\) |
Unit - Symbol | English | Metric | SI |
Tags: Engineering Nomenclature and Symbols Physics Mathematics Science