Formula Symbols - A

Written by Jerry Ratzlaff on . Posted in Nomenclature & Symbols for Engineering, Mathematics, and Science

Nomenclature and Symbols Glossary

Algebra Symbols, Angle and Line Symbols, ASCII Characters, Basic Math Symbols, Bracket Symbols, Equivalence Symbols, Geometry Symbols, Greek Alphabet, HTML Colors, Miscellaneous Symbols, Roman Numerals, Set Symbols, Square Root Symbols

 

Formula Symbols

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

A

SymbolGreek SymbolDefinitionEnglishMetricSIValue
\(V_d\) - Abbe number dimensionless  -
\(T\)   absolute dry bulb temperature - \(K\) \(K\) -
\(AH\) - absolute humidity \(\large{\frac{lbm}{ft^3}}\) \(\large{\frac{g}{m^3}}\) \(g - m^{-3}\)  -
\(p_a\) - absolute pressure \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\)  -
\(\epsilon \) epsilon absolute roughness \(in\) \(mm\) \(mm\)  -
\(T_a\) - absolute temperature \(F\) \(C\) \(x+273.15\;K\)  -
\(R_t\) - absolute thermal resistance - - - -
\(\mu \) mu absolute viscosity \(\large{\frac{lbf-sec}{ft^2}}\) \(Pa-s\) \(kg - m^{-1} - s^{-1}\)  -
\(\alpha\) alpha absorptance - - -  -
\(\alpha\) alpha absorptivity - - -  -
\(a\) - acceleration \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\) \(m - s^{-2}\)  -
\(a\) - acceleration from force \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\) \(m - s^{-2}\)  -
\(g\)   acceleration of free fall \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\) \(m - s^{-2}\) -
\(g\) - acceleration of gravity \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\) \(m - s^{-2}\)  \(9.806\;65\) \(\large{\frac{m}{s^2}}\)
\(\omega\) omega acentric factor dimensionless -
\(acfm\) - ACFM \(\large{\frac{ft^3}{min}}\) \(\large{\frac{m^3}{min}}\) \(m^3 - ^min{-1}\) -
\(\gamma\) gamma activity coefficient dimensionless  -
\(E_a\) - activation energy \(lbf-ft\) \(J\) \(kg - m^2 - s^{-2}\)  -
\(ACFM\) - actual flow rate \(\large{\frac{ft^3}{sec}}\) \(\large{\frac{m^3}{s}}\) \(m^3 - s^{-1}\)   -
\(e\) - actual vapor pressure \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\)  -
\(l\) - acoustic path length between tranducer faces \(ft\) \(m\) \(m\)  -
\(p\) - acoustic pressure  \(\large{\frac{lbf-sec}{ft^2}}\) \(Pa\) \(kg-m^{-1}-s^{-1}\)  -
\(t_d\) - accustic signal downstream travel time \(sec\) \(s\) \(s\)  -
\(t_u\) - accustic signal downstream travel time \(sec\) \(s\) \(s\)  -
- - adjusts for the volume occupied by the gas particles \(in^3\) \(mm^3\) \(mm^3\) -
\(N_a\) - aeration number dimensionless  -
\(A\) - affinity - - -  -
\(t\) - age of concrete \(days\) \(days\)  \(days\) -
\(t_o\) - age of concrete at loading \(days\) \(days\) \(days\) -
\(t_c\)   age of concrete when drying starts at end of moist curing \(days\) \(days\) \(days\) -
\(a\) - aggregate content of concrete \(\large{\frac{lbm}{yd^3}}\) \(\large{\frac{kg}{m^3}}\) \(kg - m^{-3}\) -
\(A\) - air \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
\(\alpha\) alpha air content expressed as percentage dimensionless -
\(ACR\) - air consumption rate \(\large{\frac{ft^3}{min}}\) \(\large{\frac{m^3}{min}}\) \(m^3-min^{-1}\)  -
\(A\) - air content dimensionless -
\(CFM\), \(\;Q_a\) - air flow rate \(\large{\frac{ft^3}{sec}}\) \(\large{\frac{m^3}{s}}\) \(m^3 - s^{-1}\)  -
\(Q_a\) - air flow rate through piping \(\large{\frac{ft^3}{sec}}\) \(\large{\frac{m^3}{s}}\) \(m^3 - s^{-1}\)  -
\(AFR\) - air-fuel ratio dimensionless  -
\(AHP\) - air horsepower \(\large{\frac{lbf-ft}{sec}}\) \(\large{\frac{J}{s}}\) \(J - s^{-1}\)  -
\(T_i\) - air inlet temperature \(F\) \(C\) \(x+273.15\;K\)  -
\( m_a\) - air mixture \(lbm\) \(kg\) \(kg\)  -
\(T_o\) - air outlet temperature  \(F\) \(C\) \(x+273.15\;K\)  -
\(d\) - air pipe sizing \(in\) \(mm\) \(mm\) -
\(p\) - air pressure \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
\(p_l\) - air pressure loss through piping \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\)  -
\(F_a\) - air resistance \(lbf\) \(N\) \(kg - m - s^{-2}\) -
\(F_a\) - air resistance of drag \(lbf\) \(N\) \(kg - m - s^{-2}\)  -
\(F_a\) - air resistance force \(lbf\) \(N\) \(kg - m - s^{-2}\)  -
\(c_a\) - air specific heat \(\large{\frac{Btu}{lbm-F}}\) \(\large{\frac{kJ}{kg-K}}\) \(kJ - kg^{-1} - K^{-1}\)   -
\(\gamma_a\) gamma air specific weight \(\large{\frac{lbf}{ft^3}}\) \(\large{\frac{N}{m^3}}\)  \(N - m^{-3}\)   -
\(v_a\) - air velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\) \(m - s^{-1}\) -
\(v_a\) - air velocity through piping \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)  \(m - s^{-1}\) -
\(s\) - AGMA stress number - - -  -
\(Al\) - Alfven number dimensionless  -
\(v_a\) - Alfven speed \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)  \(m - s^{-1}\)  -
\(A\) - algebric difference in grade dimensionless -
\(F_a\) - allowable axial stress \(\large{\frac{lbf}{in^2}}\) \(MPa\) \(N - mm^{-2}\)  -
\(F_b\) - allowable bending stress \(\large{\frac{lbf}{in^2}}\) \(MPa\) \(N - mm^{-2}\)  -
\(F_c\) - allowable compressive stress \(\large{\frac{lbf}{in^2}}\) \(MPa\) \(N - mm^{-2}\)  -
\(F_v\) - allowable shear stress \(\large{\frac{lbf}{in^2}}\) \(MPa\) \(N - mm^{-2}\)  -
\(S\) - allowable stress \(\large{\frac{lbf}{in^2}}\) \(MPa\) \(N - mm^{-2}\)  -
\(ASD\) - allowable stress design \(\large{\frac{lbf}{in^2}}\) \(MPa\) \(N - mm^{-2}\) -
\(S_a\) - allowable stress range \(\large{\frac{lbf}{in^2}}\) \(MPa\) \(N - mm^{-2}\) -
\(F_t\) - allowable tensile stress \(\large{\frac{lbf}{in^2}}\) \(MPa\) \(N - mm^{-2}\)   -
\(A\) - allowance - - -  -
\(m_a\) - alpha particle mass \(lbm\) \(kg\) \(kg\) \(6.644\;657\;230\;(82)\;x\;10^{-27}\) \(kg\)
\(AC\) - alternating current \(I\) \(\large{\frac{C}{s}}\) \(C - s^{-1}\)  -
\(V_{mixture}\) - Amagat's law \(ft^3\) \(m^3\) \(m^3\)  -
\(T_a\) - ambient temperature \(F\) \(C\) \(x+273.15\;K\)  -
\(n\) - amount of substance - - -  -
\(A\) - amp \(I\) \(\large{\frac{C}{s}}\) \(C - s^{-1}\)  -
\(A\) - ampere \(I\) \(\large{\frac{C}{s}}\) \(C - s^{-1}\)  -
\(A\) - amplitude \(in\) \(mm\)  \(mm\)  -
\(A_l\) - amplitude (longitudinal) \(in\) \(mm\) \(mm\) -
\(AR\) - amplitude ratio - - -  -
\(\beta\) beta Andrade's beta - - -  -
\(\omega\) omega angular frequency \(\large{\frac{deg}{sec}}\) \(\large{\frac{rad}{s}}\) \(rad - s^{-1}\) -
\(A\), \(\;B\), \(\;C\) - Antoine constant - - -  -
- - Antoine equation \(\large{\frac{lbf}{in^2}}\) \(\large{\frac{kg}{m-s^2}}\)  \(kg - m^{-1} - s^{-2}\) -
\(A\), \(\;\theta\), \(\;deg\) theta angle \(deg\) \(rad\) \(rad\)   -
\(\phi\) phi angle \(deg\) \(rad\) \(rad\)   -
\(\theta\) theta angle between a perpendicular vector to the area and the magnertic field \(deg\) \(rad\) \(rad\)  -
\(\theta\) theta angle between acoustic path and the pipe's longitudinal axis \(deg\) \(rad\) \(rad\)   -
\(\Delta A\) delta angle differential \(deg\) \(rad\) \(rad\)   -
\(Imp\) - angle impulse \(lbf-ft-sec\) \(N-m-s\) \(N-m-s\)  -
\(\theta\) theta angular rotation \(\large{\frac{deg}{sec}}\) \(\large{\frac{rad}{s}}\)  \(rad - s^{-1}\)  -
\(\gamma \) gamma angle of twist \(deg\) \(rad\) \(rad\)   -
\(\alpha\) alpha angular acceleration \(\large{\frac{deg}{sec^2}}\) \(\large{\frac{rad}{s^2}}\)  \(rad - s^{-2}\)  -
\(\theta\) theta angular deflection \(in\) \(mm\) \(mm\)  -
\(\theta \) theta angular displacement \(deg\) \(rad\) \(rad\)  -
\(\omega\) omega angular frequency \(\large{\frac{deg}{sec}}\) \(\large{\frac{rad}{s}}\)  \(rad - s^{-1}\)  -
\(H\) - angular impulse  \(\large{\frac{lbm-ft^2}{sec}}\)  \(\large{\frac{kg-m^2}{s}}\) \(kg-m^2-s^{-1}\)  -
\(L\) - angular momentum  \(\large{\frac{lbm-ft^2}{sec}}\)  \(\large{\frac{kg-m^2}{s}}\) \(kg-m^2-s^{-1}\)  -
\(L\) - angular momentum of an object with linear momentum  \(\large{\frac{lbm-ft^2}{sec}}\)  \(\large{\frac{kg-m^2}{s}}\)  \(kg-m^2-s^{-1}\) -
- - angular Planck constant  \(\large{\frac{lbf-ft}{sec}}\) \(J-s\) \(kg-m^2-s^{-1}\) \(1.054\;571\;726\;(47)\;x\;10^{-34}\) \(J-s\)
\(\theta\) theta angular position \(deg\) \(rad\) \(rad\)  -
\(\omega_0\) omega angular resonant frequency \(\large{\frac{1}{sec}}\) \(\large{\frac{1}{s}}\) \(1 - s^{-1}\) -
\(\theta\) theta angular rotation \(\large{\frac{deg}{sec}}\) \(\large{\frac{rad}{s}}\) \(rad - s^{-1}\)  -
\(\omega\) omega angular speed \(\large{\frac{deg}{sec}}\) \(\large{\frac{rad}{s}}\) \(rad - s^{-1}\)  -
\(\omega\), \(\;v_a\) omega angular velocity \(\large{\frac{deg}{sec}}\) \(\large{\frac{rad}{s}}\)  \(rad - s^{-1}\)  -
\(d \omega\), \(\;\Delta \omega \) omega angular velocity differential \(\large{\frac{deg}{sec}}\) \(\large{\frac{rad}{s}}\) \(rad - s^{-1}\)  -
\(\omega\) omega angular velovity of a rolling sphere \(\large{\frac{deg}{sec}}\) \(\large{\frac{rad}{s}}\) \(rad - s^{-1}\) -
\(k\) - angular wavenumber \(\large{\frac{rad}{ft}}\) \(\large{\frac{rad}{m}}\) \(rad - m^{-1}\)  -
\(k\) - angular wave vector - - -  -
\(API_{gravity}\)   API gravity \(F\) \(C\) \(x+273.15\;K\) -
\(a\) - apothem \(in\) or \(ft\) \(mm\) or \(m\) \(mm\) or \(m\)  -
\(P\) - applied concentrated load \(lbf\) \(N\) \(kg - m - s^{-2}\) -
\(w\) - applied distributed load \(lbf\) \(N\) \(kg-m-s^{-2}\) -
\( F_a\) - applied force \(lbf\) \(N\) \(kg - m - s^{-2}\)  -
\(R\) - applied stress \(\large{\frac{lbf}{in^2}}\) \(MPa\) \(N - mm^{-2}\) -
\(Ar\) - Archimedes number dimensionless  -
\(B\) - Archimede's principle \(lbf\) \(N\) \(kg - m - s^{-2}\)  -
\(E\), \(\;V\) - arc voltage \(V\) \(V\) \(kg - m^2 - s^{-3} - A^{-1}\) -
\(\overset{\frown}{l}\), \(\; l_a\) - arc length \(in\) or \(ft\) \(mm\) or \(m\)  \(mm\) or \(m\) -
\(A\), \(\;S\) - area \(in^2\) or \(ft^2\) \(mm^2\) or \(m^2\) \(mm^2\) or \(m^2\)  -
\(A\), \(\;A_c\) - area cross-section \(in^2\) or \(ft^2\) \(mm^2\) or \(m^2\) \(mm^2\) or \(m^2\) -
\(A_{throat}\) - area cross the throat of a weld \(in^2\) or \(ft^2\) \(mm^2\) or \(m^2\) \(mm^2\) or \(m^2\)  -
\(A_d\) - area differential \(in^2\) or \(ft^2\) \(mm^2\) or \(m^2\) \(mm^2\) or \(m^2\)  -
\(f_a\) - area gradient - - -  -
\(\Delta A\)  - area thermal expansion \(in^2\) \(mm^2\) \(mm^2\)   -
\(\alpha_a\) alpha area thermal expansion coefficient \(\large{ \frac{in^2}{in^2\;F} }\) \(\large{ \frac{mm^2}{mm^2-C} }\) \(mm^2-mm^{-2}-C^{-1}\)  -
\(Ar\) - Arrhenius number dimensionless  -
\(k\) - Arrhenius equation - \(\large{ \frac{mol}{L-s} }\) \(mol- L^{-1}-s^{-1}\) -
\(\rho\) rho atmosphere density \(\large{\frac{lbm}{ft^3}}\) \(\large{\frac{kg}{m^3}}\) \(kg-m^{-3}\)  -
\(p_a\), \(\;p_{atm}\) - atmospheric pressure \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\)  -
\(m_a\) - atomic mass - - -  -
\(m_u\) - atomic mass constant \(lbm\) \(kg\) \(kg\) \(1.660\;539\;066\;60\;(50)\;x\;10^{-27}\) \(kg\)
\(u\) - atomic mass unit \(lbm\) \(kg\) \(kg\)  -
\(Z\) - atomic number dimensionless  -
\(N\) - atomic number density - \(\large{\frac{atoms}{cm^2}}\) \(atoms-cm^{-2}\) -
\(A\) - atomic weight - - -  -
\(p_a\) - atmospheric pressure \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
\(p_a\) - atmospheric pressure of moist air \(\large{\frac{lbf}{in^2}}\) \(Pa\) \(kg- m^{-1}-s^{-2}\) -
\(T_a\) - atmospheric temperature \(F\) \(C\) \(x+273.15\;K\) -
\(A\) - Atwood number dimensionless  -
\(Nv\) - Avagadro's number moles moles moles  -
\(\Phi\) Phi availability function - - -  -
\(\bar {a}\), \(\;a_a\) - average acceleration \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\)  \(m - s^{-2}\)   -
\(\bar {\alpha} \) alpha average angular acceleration \(\large{\frac{deg}{sec^2}}\) \(\large{\frac{rad}{s^2}}\)  \(rad - s^{-2}\)   -
\(v_a\), \(\;\bar{\omega}\) omega average angular velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\) \(m - s^{-1}\)  -
\(v_a\), \(\;\bar{\omega}\) omega average angular velocity change in velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)  \(m - s^{-1}\) -
\(\bar {F}\), \(\;F_a\) - average force \(lbf\) \(N\) \(kg - m - s^{-2}\)  -
\(mw\) - average mole rate - - - -
\(\bar {u}\), \(\;v_a\) - average speed \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\) \(m - s^{-1}\)  -
\(\sigma_{avg}\) sigma average stress of weld \(\large{\frac{lbf}{in^2}}\) \(MPa\) \(N - mm^{-2}\) -
\(\bar {v}\), \(\;v_a\) - average velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\) \(m - s^{-1}\)  -
\(\bar{v}\) - average velocity change in velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)  \(m - s^{-1}\) -
\(v_a\) - average axial velocity of water flow \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)  \(m - s^{-1}\)  -
- - Avogadro's law \(mol\) \(mol\) \(mol\)  -
\(L\), \(\;N_a\) - Avogadro constant \(\large{\frac{count}{mol}}\) \(\large{\frac{count}{mol}}\)  \(count - mol^{-1}\)  \(6.022\;141\;29\;(27) \;x\; 10^{23}\) \(\large{\frac{count}{mol}}\)
\(D_a\) - axial diffusivity - - -  -
\(P\) - axial force \(lbf\) \(N\) \(kg - m - s^{-2}\)  -
\(k\) - axial stiffness \(lbf\) \(N\) \(kg - m - s^{-2}\) -
\(F\) - axial thrust \(lbf\) \(N\) \(kg - m - s^{-2}\) -
\(\epsilon_a\), \(\;\epsilon\) epsilon axial strain (longitudinal strain) \(\large{\frac{in}{in}}\) \(\large{\frac{mm}{mm}}\)  \(mm - mm^{-1}\)   -
Symbol Greek Symbol Definition English Metric   Value

 

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

 

Piping Designer Logo Slide 1